Abstract

We demonstrate a novel approach for high-resolution spectroscopy based on frequency upconversion and postfiltering by means of a scanning Fabry–Perot interferometer. The system is based on sum-frequency mixing, shifting the spectral content from the mid-infrared to the near-visible region allowing for direct detection with a silicon-based CCD camera. This approach allows for low noise detection even without cooling of the detector. A setup is realized for the 3 μm regime with a spectral resolution of 0.2 nm using lithium niobate as the nonlinear material and mixing with a single-frequency 1064 nm laser. We investigate water vapor emission lines from a butane burner and compare the measured results to model data. The presented method we suggest to be used for real-time monitoring of specific gas lines and reference signals.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. N. Abedin, M. G. Mlynczak, and T. F. Refaat, Proc. SPIE 7808, 78080V (2010).
    [CrossRef]
  2. M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, J. Breath Res. 1, 014001 (2007).
    [CrossRef]
  3. Z. W. Sun, M. Försth, Z. S. Li, B. Li, and M. Aldén, Fire Mater. 35, 527 (2011).
    [CrossRef]
  4. J. Li, U. Parchatka, R. Königstedt, and H. Fischer, Opt. Express 20, 7590 (2012).
    [CrossRef]
  5. L. Becker, Proc. SPIE 6127, 61270S (2006).
    [CrossRef]
  6. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry, 2nd ed. (Wiley, 2007).
  7. J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, Nat. Photonics 6, 788 (2012).
    [CrossRef]
  8. “Spectral Calculator—High resolution gas spectra,” http://www.spectralcalc.com/calc/spectralcalc.php .
  9. J. S. Dam, C. Pedersen, and P. Tidemand-Lichtenberg, Opt. Express 20, 1475 (2012).
    [CrossRef]
  10. L. Høgstedt, O. B. Jensen, J. S. Dam, C. Pedersen, and P. Tidemand-Lichtenberg, Laser Phys. 22, 1676 (2012).
    [CrossRef]

2012 (4)

J. Li, U. Parchatka, R. Königstedt, and H. Fischer, Opt. Express 20, 7590 (2012).
[CrossRef]

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, Nat. Photonics 6, 788 (2012).
[CrossRef]

J. S. Dam, C. Pedersen, and P. Tidemand-Lichtenberg, Opt. Express 20, 1475 (2012).
[CrossRef]

L. Høgstedt, O. B. Jensen, J. S. Dam, C. Pedersen, and P. Tidemand-Lichtenberg, Laser Phys. 22, 1676 (2012).
[CrossRef]

2011 (1)

Z. W. Sun, M. Försth, Z. S. Li, B. Li, and M. Aldén, Fire Mater. 35, 527 (2011).
[CrossRef]

2010 (1)

M. N. Abedin, M. G. Mlynczak, and T. F. Refaat, Proc. SPIE 7808, 78080V (2010).
[CrossRef]

2007 (1)

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, J. Breath Res. 1, 014001 (2007).
[CrossRef]

2006 (1)

L. Becker, Proc. SPIE 6127, 61270S (2006).
[CrossRef]

Abedin, M. N.

M. N. Abedin, M. G. Mlynczak, and T. F. Refaat, Proc. SPIE 7808, 78080V (2010).
[CrossRef]

Aldén, M.

Z. W. Sun, M. Försth, Z. S. Li, B. Li, and M. Aldén, Fire Mater. 35, 527 (2011).
[CrossRef]

Bakhirkin, Y.

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, J. Breath Res. 1, 014001 (2007).
[CrossRef]

Becker, L.

L. Becker, Proc. SPIE 6127, 61270S (2006).
[CrossRef]

Dam, J. S.

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, Nat. Photonics 6, 788 (2012).
[CrossRef]

J. S. Dam, C. Pedersen, and P. Tidemand-Lichtenberg, Opt. Express 20, 1475 (2012).
[CrossRef]

L. Høgstedt, O. B. Jensen, J. S. Dam, C. Pedersen, and P. Tidemand-Lichtenberg, Laser Phys. 22, 1676 (2012).
[CrossRef]

de Haseth, J. A.

P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry, 2nd ed. (Wiley, 2007).

Fischer, H.

Försth, M.

Z. W. Sun, M. Försth, Z. S. Li, B. Li, and M. Aldén, Fire Mater. 35, 527 (2011).
[CrossRef]

Griffiths, P. R.

P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry, 2nd ed. (Wiley, 2007).

Høgstedt, L.

L. Høgstedt, O. B. Jensen, J. S. Dam, C. Pedersen, and P. Tidemand-Lichtenberg, Laser Phys. 22, 1676 (2012).
[CrossRef]

Jensen, O. B.

L. Høgstedt, O. B. Jensen, J. S. Dam, C. Pedersen, and P. Tidemand-Lichtenberg, Laser Phys. 22, 1676 (2012).
[CrossRef]

Königstedt, R.

Lewicki, R.

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, J. Breath Res. 1, 014001 (2007).
[CrossRef]

Li, B.

Z. W. Sun, M. Försth, Z. S. Li, B. Li, and M. Aldén, Fire Mater. 35, 527 (2011).
[CrossRef]

Li, J.

Li, Z. S.

Z. W. Sun, M. Försth, Z. S. Li, B. Li, and M. Aldén, Fire Mater. 35, 527 (2011).
[CrossRef]

McCurdy, M. R.

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, J. Breath Res. 1, 014001 (2007).
[CrossRef]

Mlynczak, M. G.

M. N. Abedin, M. G. Mlynczak, and T. F. Refaat, Proc. SPIE 7808, 78080V (2010).
[CrossRef]

Parchatka, U.

Pedersen, C.

J. S. Dam, C. Pedersen, and P. Tidemand-Lichtenberg, Opt. Express 20, 1475 (2012).
[CrossRef]

L. Høgstedt, O. B. Jensen, J. S. Dam, C. Pedersen, and P. Tidemand-Lichtenberg, Laser Phys. 22, 1676 (2012).
[CrossRef]

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, Nat. Photonics 6, 788 (2012).
[CrossRef]

Refaat, T. F.

M. N. Abedin, M. G. Mlynczak, and T. F. Refaat, Proc. SPIE 7808, 78080V (2010).
[CrossRef]

Sun, Z. W.

Z. W. Sun, M. Försth, Z. S. Li, B. Li, and M. Aldén, Fire Mater. 35, 527 (2011).
[CrossRef]

Tidemand-Lichtenberg, P.

L. Høgstedt, O. B. Jensen, J. S. Dam, C. Pedersen, and P. Tidemand-Lichtenberg, Laser Phys. 22, 1676 (2012).
[CrossRef]

J. S. Dam, C. Pedersen, and P. Tidemand-Lichtenberg, Opt. Express 20, 1475 (2012).
[CrossRef]

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, Nat. Photonics 6, 788 (2012).
[CrossRef]

Tittel, F. K.

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, J. Breath Res. 1, 014001 (2007).
[CrossRef]

Wysocki, G.

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, J. Breath Res. 1, 014001 (2007).
[CrossRef]

Fire Mater. (1)

Z. W. Sun, M. Försth, Z. S. Li, B. Li, and M. Aldén, Fire Mater. 35, 527 (2011).
[CrossRef]

J. Breath Res. (1)

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, J. Breath Res. 1, 014001 (2007).
[CrossRef]

Laser Phys. (1)

L. Høgstedt, O. B. Jensen, J. S. Dam, C. Pedersen, and P. Tidemand-Lichtenberg, Laser Phys. 22, 1676 (2012).
[CrossRef]

Nat. Photonics (1)

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, Nat. Photonics 6, 788 (2012).
[CrossRef]

Opt. Express (2)

Proc. SPIE (2)

L. Becker, Proc. SPIE 6127, 61270S (2006).
[CrossRef]

M. N. Abedin, M. G. Mlynczak, and T. F. Refaat, Proc. SPIE 7808, 78080V (2010).
[CrossRef]

Other (2)

“Spectral Calculator—High resolution gas spectra,” http://www.spectralcalc.com/calc/spectralcalc.php .

P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry, 2nd ed. (Wiley, 2007).

Supplementary Material (1)

» Media 1: AVI (1271 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic layout of the setup. The signal is imaged through the frequency converter and filtered by the scanning Fabry–Perot. The output is captured by a standard CCD camera in the 800 nm spectral range.

Fig. 2.
Fig. 2.

(a) Phase-match curve along with the acceptance bandwidth of the nonlinear conversion process. Error bars indicate phase-matched bandwidth. (b) The upconverted image of mid-IR emission from hot water vapor at 2.9 μm.

Fig. 3.
Fig. 3.

(a) Low and high spectral resolution of the same water vapor emission lines. (b) CCD images for two different Fabry–Perot mirror spacings. (Media 1 showing images scanning the mirror spacing clicking the CCD images.)

Fig. 4.
Fig. 4.

Measured high resolution spectra for three different crystal temperatures compared to spectral data calculated from HITEMP database using SpectralCalc [8]. The reference emission spectrum is calculated at 1500 K, and atmospheric pressure.

Metrics