Abstract

We use numerical simulations to revisit the generation of fiber supercontinua pumped by partially coherent continuous-wave (CW) sources. Specifically, we show that intensity fluctuations characteristic of temporal partial coherence can be described as a stochastic train of high-order solitons, whose individual dynamics drive continuum formation. For sources with sufficiently low coherence, these solitons actually undergo fission rather than modulation instability, changing the nature of the CW supercontinuum evolution.

© 2012 Optical Society of America

Full Article  |  PDF Article
Related Articles
Random evolution and coherence degradation of a high-order optical soliton train in the presence of noise

Masataka Nakazawa, Hirokazu Kubota, and Kohichi Tamura
Opt. Lett. 24(5) 318-320 (1999)

Coherence of subsequent supercontinuum pulses generated in tapered fibers in the femtosecond regime

D. Tuürke, S. Pricking, A. Husakou, J. Teipel, J. Herrmann, and H. Giessen
Opt. Express 15(5) 2732-2741 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription