Abstract

We use numerical simulations to revisit the generation of fiber supercontinua pumped by partially coherent continuous-wave (CW) sources. Specifically, we show that intensity fluctuations characteristic of temporal partial coherence can be described as a stochastic train of high-order solitons, whose individual dynamics drive continuum formation. For sources with sufficiently low coherence, these solitons actually undergo fission rather than modulation instability, changing the nature of the CW supercontinuum evolution.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Travers, in Supercontinuum Generation in Optical Fibers, J. M. Dudley and J. R. Taylor, eds. (Cambridge University, 2010), p. 142.
  2. J. M. Dudley and S. Coen, Opt. Lett. 27, 1180 (2002).
    [CrossRef]
  3. J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
    [CrossRef]
  4. J. C. Travers, J. Opt. 12, 113001 (2010).
    [CrossRef]
  5. A. Demircan and U. Bandelow, Appl. Phys. B 86, 31 (2007).
    [CrossRef]
  6. G. Genty, M. Surakka, J. Turunen, and A. T. Friberg, J. Opt. Soc. Am. B 28, 2301 (2011).
    [CrossRef]
  7. G. Genty and J. M. Dudley, IEEE J. Quantum Electron. 45, 1331 (2009).
    [CrossRef]
  8. A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, Opt. Express 12, 2838 (2004).
    [CrossRef]
  9. A. Mussot, A. Kudlinski, M. Kolobov, E. Louvergneaux, M. Douay, and M. Taki, Opt. Express 17, 17010 (2009).
    [CrossRef]
  10. E. J. R. Kelleher, J. C. Travers, S. V. Popov, and J. R. Taylor, J. Opt. Soc. Am. B 29, 502 (2012).
    [CrossRef]
  11. S. Martin-Lopez, A. Carrasco-Sanz, P. Corredera, L. Abrardi, M. L. Hernanz, and M. Gonzalez-Herraez, Opt. Lett. 31, 3477 (2006).
    [CrossRef]
  12. F. Vanholsbeeck, S. Martin-Lopez, M. Gonzlez-Herrez, and S. Coen, Opt. Express 13, 6615 (2005).
    [CrossRef]
  13. J. C. Travers, S. V. Popov, and J. R. Taylor, in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2008), p. CMT3.
  14. M. Frosz, Opt. Express 18, 14778 (2010).
    [CrossRef]
  15. S. K. Turitsyn, A. E. Bednyakova, M. P. Fedoruk, A. I. Latkin, A. A. Fotiadi, A. S. Kurkov, and E. Sholokhov, Opt. Express 19, 8394 (2011).
    [CrossRef]
  16. A. Sauter, S. Pitois, G. Millot, and A. Picozzi, Opt. Lett. 302143 (2005).
    [CrossRef]
  17. M. Frosz, O. Bang, and A. Bjarklev, Opt. Express 14, 9391 (2006).
    [CrossRef]
  18. J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, Opt. Express 17, 21497 (2009).
    [CrossRef]
  19. B. Barviau, B. Kibler, and A. Picozzi, Phys. Rev. A 79063840 (2009).
    [CrossRef]

2012

2011

2010

M. Frosz, Opt. Express 18, 14778 (2010).
[CrossRef]

J. C. Travers, J. Opt. 12, 113001 (2010).
[CrossRef]

2009

2007

A. Demircan and U. Bandelow, Appl. Phys. B 86, 31 (2007).
[CrossRef]

2006

2005

2004

2002

Abrardi, L.

Akhmediev, N.

Bandelow, U.

A. Demircan and U. Bandelow, Appl. Phys. B 86, 31 (2007).
[CrossRef]

Bang, O.

Barviau, B.

B. Barviau, B. Kibler, and A. Picozzi, Phys. Rev. A 79063840 (2009).
[CrossRef]

Bednyakova, A. E.

Bjarklev, A.

Carrasco-Sanz, A.

Coen, S.

Corredera, P.

Demircan, A.

A. Demircan and U. Bandelow, Appl. Phys. B 86, 31 (2007).
[CrossRef]

Dias, F.

Douay, M.

Dudley, J. M.

J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, Opt. Express 17, 21497 (2009).
[CrossRef]

G. Genty and J. M. Dudley, IEEE J. Quantum Electron. 45, 1331 (2009).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

J. M. Dudley and S. Coen, Opt. Lett. 27, 1180 (2002).
[CrossRef]

Fedoruk, M. P.

Finot, C.

Fotiadi, A. A.

Friberg, A. T.

Frosz, M.

Genty, G.

Gonzalez-Herraez, M.

Gonzlez-Herrez, M.

Hernanz, M. L.

Kelleher, E. J. R.

Kibler, B.

Kolobov, M.

Kudlinski, A.

Kurkov, A. S.

Lantz, E.

Latkin, A. I.

Louvergneaux, E.

Maillotte, H.

Martin-Lopez, S.

Millot, G.

Mussot, A.

Picozzi, A.

B. Barviau, B. Kibler, and A. Picozzi, Phys. Rev. A 79063840 (2009).
[CrossRef]

A. Sauter, S. Pitois, G. Millot, and A. Picozzi, Opt. Lett. 302143 (2005).
[CrossRef]

Pitois, S.

Popov, S. V.

E. J. R. Kelleher, J. C. Travers, S. V. Popov, and J. R. Taylor, J. Opt. Soc. Am. B 29, 502 (2012).
[CrossRef]

J. C. Travers, S. V. Popov, and J. R. Taylor, in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2008), p. CMT3.

Sauter, A.

Sholokhov, E.

Surakka, M.

Sylvestre, T.

Taki, M.

Taylor, J. R.

E. J. R. Kelleher, J. C. Travers, S. V. Popov, and J. R. Taylor, J. Opt. Soc. Am. B 29, 502 (2012).
[CrossRef]

J. C. Travers, S. V. Popov, and J. R. Taylor, in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2008), p. CMT3.

Travers, J. C.

E. J. R. Kelleher, J. C. Travers, S. V. Popov, and J. R. Taylor, J. Opt. Soc. Am. B 29, 502 (2012).
[CrossRef]

J. C. Travers, J. Opt. 12, 113001 (2010).
[CrossRef]

J. C. Travers, S. V. Popov, and J. R. Taylor, in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2008), p. CMT3.

J. C. Travers, in Supercontinuum Generation in Optical Fibers, J. M. Dudley and J. R. Taylor, eds. (Cambridge University, 2010), p. 142.

Turitsyn, S. K.

Turunen, J.

Vanholsbeeck, F.

Appl. Phys. B

A. Demircan and U. Bandelow, Appl. Phys. B 86, 31 (2007).
[CrossRef]

IEEE J. Quantum Electron.

G. Genty and J. M. Dudley, IEEE J. Quantum Electron. 45, 1331 (2009).
[CrossRef]

J. Opt.

J. C. Travers, J. Opt. 12, 113001 (2010).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Phys. Rev. A

B. Barviau, B. Kibler, and A. Picozzi, Phys. Rev. A 79063840 (2009).
[CrossRef]

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Other

J. C. Travers, in Supercontinuum Generation in Optical Fibers, J. M. Dudley and J. R. Taylor, eds. (Cambridge University, 2010), p. 142.

J. C. Travers, S. V. Popov, and J. R. Taylor, in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2008), p. CMT3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Spectral evolution of a CW field propagating in an HNLF. (a) Pure CW input signal, with one photon per mode noise. (b) Model of a realistic CW fiber laser, with a bandwidth of 0.52 nm and one photon per mode noise. (c) As per (b) but with a bandwidth of 3.82 nm. Color bar: 75 dB ol-37-24-5217-i001 0 dB.

Fig. 2.
Fig. 2.

(a) Computed instantaneous and averaged power of a typical CW fiber laser, with a bandwidth of 3.82 nm. (b) Closeup on the gray shaded region in (a). The intensity is fitted with the functional shape of a temporal soliton, with a duration of T s = 0.8 ps and peak power P s = 55.4 W . (c) Density map showing the temporal evolution with propagation distance of the region shown in (b). Color bar: 20 dB ol-37-24-5217-i002 0 dB. (d) Temporal intensity slices at the indicated propagation distances. The white dotted line in (c) denotes the approximate point of maximal compression at 9.5 m.

Fig. 3.
Fig. 3.

(a) Effective soliton order versus pump bandwidth. The gray region highlights bandwidths for which N eff > 15 . The blue boxes correspond to the positions of the pump fields of (b)–(d). Average spectral intensity evolution, over 100 independent realizations, as a function of propagation distance (b)–(d). Color bar: 0 dB ol-37-24-5217-i003 75 dB .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N eff = [ γ P 0 λ p 4 2 c 2 Δ λ p 2 | β 2 | ] 1 / 2 .

Metrics