Abstract

The brightness of high-power diode-laser systems can be significantly increased by using dense wavelength-multiplexing technologies. Among these technologies, state-of-the-art volume holographic gratings (VHGs) are suitable wavelength-selective filters for scaling the power of frequency-stabilized high-power lasers. The frequency spacing is limited due to the sidelobes of the spectral filter characteristic. In this Letter, we present the simulation results of novel apodized VHGs produced by Gaussian-beam interference. Apodized VHGs offer increased sidelobe suppression of up to 22 dB with conventional grating dimensions and, moreover, will improve the spectral brightness of dense wavelength-multiplexing systems by a factor of approximately six.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Wessling, M. Traub, and D. Hoffmann, Proc. SPIE 6456, 11 (2007).
    [CrossRef]
  2. L. B. Glebov, Opt. Mater. 25, 413 (2004).
    [CrossRef]
  3. S. Datta, C. Li, S. R. Forrest, B. Volodin, S. Dolgy, E. D. Melnik, and V. S. Ban, IEEE J. Quantum Electron. 40, 580 (2004).
    [CrossRef]
  4. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  5. J. M. Tsui, C. Thompson, V. Metha, J. M. Roth, V. I. Smirnov, and L. B. Glebov, Opt. Express 12, 6642 (2004).
    [CrossRef]
  6. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
  7. O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, Appl. Opt. 38, 619 (1999).

2007 (1)

C. Wessling, M. Traub, and D. Hoffmann, Proc. SPIE 6456, 11 (2007).
[CrossRef]

2004 (3)

L. B. Glebov, Opt. Mater. 25, 413 (2004).
[CrossRef]

S. Datta, C. Li, S. R. Forrest, B. Volodin, S. Dolgy, E. D. Melnik, and V. S. Ban, IEEE J. Quantum Electron. 40, 580 (2004).
[CrossRef]

J. M. Tsui, C. Thompson, V. Metha, J. M. Roth, V. I. Smirnov, and L. B. Glebov, Opt. Express 12, 6642 (2004).
[CrossRef]

1999 (1)

1969 (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Ban, V. S.

S. Datta, C. Li, S. R. Forrest, B. Volodin, S. Dolgy, E. D. Melnik, and V. S. Ban, IEEE J. Quantum Electron. 40, 580 (2004).
[CrossRef]

Datta, S.

S. Datta, C. Li, S. R. Forrest, B. Volodin, S. Dolgy, E. D. Melnik, and V. S. Ban, IEEE J. Quantum Electron. 40, 580 (2004).
[CrossRef]

Dolgy, S.

S. Datta, C. Li, S. R. Forrest, B. Volodin, S. Dolgy, E. D. Melnik, and V. S. Ban, IEEE J. Quantum Electron. 40, 580 (2004).
[CrossRef]

Efimov, O. M.

Forrest, S. R.

S. Datta, C. Li, S. R. Forrest, B. Volodin, S. Dolgy, E. D. Melnik, and V. S. Ban, IEEE J. Quantum Electron. 40, 580 (2004).
[CrossRef]

Glebov, L. B.

Glebova, L. N.

Hoffmann, D.

C. Wessling, M. Traub, and D. Hoffmann, Proc. SPIE 6456, 11 (2007).
[CrossRef]

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Li, C.

S. Datta, C. Li, S. R. Forrest, B. Volodin, S. Dolgy, E. D. Melnik, and V. S. Ban, IEEE J. Quantum Electron. 40, 580 (2004).
[CrossRef]

Melnik, E. D.

S. Datta, C. Li, S. R. Forrest, B. Volodin, S. Dolgy, E. D. Melnik, and V. S. Ban, IEEE J. Quantum Electron. 40, 580 (2004).
[CrossRef]

Metha, V.

Richardson, K. C.

Roth, J. M.

Smirnov, V. I.

Thompson, C.

Traub, M.

C. Wessling, M. Traub, and D. Hoffmann, Proc. SPIE 6456, 11 (2007).
[CrossRef]

Tsui, J. M.

Volodin, B.

S. Datta, C. Li, S. R. Forrest, B. Volodin, S. Dolgy, E. D. Melnik, and V. S. Ban, IEEE J. Quantum Electron. 40, 580 (2004).
[CrossRef]

Wessling, C.

C. Wessling, M. Traub, and D. Hoffmann, Proc. SPIE 6456, 11 (2007).
[CrossRef]

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

IEEE J. Quantum Electron. (1)

S. Datta, C. Li, S. R. Forrest, B. Volodin, S. Dolgy, E. D. Melnik, and V. S. Ban, IEEE J. Quantum Electron. 40, 580 (2004).
[CrossRef]

Opt. Express (1)

Opt. Mater. (1)

L. B. Glebov, Opt. Mater. 25, 413 (2004).
[CrossRef]

Proc. SPIE (1)

C. Wessling, M. Traub, and D. Hoffmann, Proc. SPIE 6456, 11 (2007).
[CrossRef]

Other (1)

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Simulated spectral diffraction efficiency of a state-of-the-art beam combiner produced for Bragg condition λBragg=975nm, θBragg=15°, η=90%, and d=2mm.

Fig. 2.
Fig. 2.

Schematic drawing of the intensity modulation of a Gaussian two-beam interference.

Fig. 3.
Fig. 3.

Gaussian two-beam interference and the resulting intensity envelopes for (a) maximum I+ and (b) minimum I intensity of the interference pattern for different cross-section positions: 1. y/w0=0, 2. y/w0=0.3, and 3. y/w0=0.6. Dotted lines demonstrate the orientation of grating layers.

Fig. 4.
Fig. 4.

Schematic drawing of an approach for layered media of an arbitrary refraction index profile. The index n0 is the refraction index of the unexposed VHG material.

Fig. 5.
Fig. 5.

Calculated angular and spectral diffraction efficiencies of apodized and conventional beam-combiner VHGs with Bragg angle of 15° at the Bragg wavelength of 976 nm and a peak efficiency of 90%.

Fig. 6.
Fig. 6.

Different types of apodization.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I(r)=ϵc2|E1(r)+E2(r)|2=I0(r)(1+I+(r)I(r)I+(r)+I(r)cos(2kxx)).
I±(r)=ϵc2(|E1(r)|±|E2(r)|)2.
r=tanh(πΔn22nav)
nlow=nav1+randnhigh=nav1r.
T=(eiψr2eiψr(eiψeiψ)r(eiψeiψ)eiψr2eiψ)withψ=ϕ1ϕ2.
TG=s=1NTs.
w0x=cosα·dlna

Metrics