Abstract

Polarization instability (PI) of ultrashort light pulses, giving rise to vectorial supercontinuum generation, is demonstrated using a subwavelength-core, highly birefringent, normally dispersive optical fiber. The evolution of ultrashort pulses in the regime of PI is shown to radically differ from polarization-instability dynamics of cw fields and longer laser pulses. As the peak power of the laser field decreases along the propagation path due to dispersion-induced pulse stretching, the Poincaré-sphere map of field dynamics is shown to evolve from the behavior typical of PI in the highly nonlinear regime toward the beating dynamics of uncoupled polarization modes, characteristic of low field intensities and cw fields.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. B. Benjamin, Proc. R. Soc. Math. Phys. Eng. Sci 299, 59 (1967).
    [CrossRef]
  2. T. Tainuti and H. Washimi, Phys. Rev. Lett. 21, 209 (1968).
    [CrossRef]
  3. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  4. L. Salasnich, A. Parola, and L. Reatto, Phys. Rev. Lett. 91, 080405 (2003).
    [CrossRef]
  5. V. I. Bespalov and V. I. Talanov, JETP Lett. 3, 307 (1966).
  6. P. St. J. Russell, Science 299, 358 (2003).
    [CrossRef]
  7. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Opt. Lett. 28, 2225 (2003).
    [CrossRef]
  8. E. E. Serebryannikov, S. O. Konorov, A. A. Ivanov, M. V. Alfimov, M. Scalora, and A. M. Zheltikov, Phys. Rev. E 72, 027601 (2005).
    [CrossRef]
  9. A. M. Zheltikov, JETP Lett. 85, 539 (2007).
    [CrossRef]
  10. R. J. Kruhlak, G. K. Wong, J. S. Chen, S. G. Murdoch, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight, Opt. Lett. 31, 1379 (2006).
    [CrossRef]
  11. J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
    [CrossRef]
  12. A. M. Zheltikov, Phys. Uspekhi 49, 605 (2006).
    [CrossRef]

2007

A. M. Zheltikov, JETP Lett. 85, 539 (2007).
[CrossRef]

2006

R. J. Kruhlak, G. K. Wong, J. S. Chen, S. G. Murdoch, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight, Opt. Lett. 31, 1379 (2006).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

A. M. Zheltikov, Phys. Uspekhi 49, 605 (2006).
[CrossRef]

2005

E. E. Serebryannikov, S. O. Konorov, A. A. Ivanov, M. V. Alfimov, M. Scalora, and A. M. Zheltikov, Phys. Rev. E 72, 027601 (2005).
[CrossRef]

2003

P. St. J. Russell, Science 299, 358 (2003).
[CrossRef]

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Opt. Lett. 28, 2225 (2003).
[CrossRef]

L. Salasnich, A. Parola, and L. Reatto, Phys. Rev. Lett. 91, 080405 (2003).
[CrossRef]

1968

T. Tainuti and H. Washimi, Phys. Rev. Lett. 21, 209 (1968).
[CrossRef]

1967

T. B. Benjamin, Proc. R. Soc. Math. Phys. Eng. Sci 299, 59 (1967).
[CrossRef]

1966

V. I. Bespalov and V. I. Talanov, JETP Lett. 3, 307 (1966).

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Alfimov, M. V.

E. E. Serebryannikov, S. O. Konorov, A. A. Ivanov, M. V. Alfimov, M. Scalora, and A. M. Zheltikov, Phys. Rev. E 72, 027601 (2005).
[CrossRef]

Benjamin, T. B.

T. B. Benjamin, Proc. R. Soc. Math. Phys. Eng. Sci 299, 59 (1967).
[CrossRef]

Bespalov, V. I.

V. I. Bespalov and V. I. Talanov, JETP Lett. 3, 307 (1966).

Chen, J. S.

Coen, S.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Harvey, J. D.

Ivanov, A. A.

E. E. Serebryannikov, S. O. Konorov, A. A. Ivanov, M. V. Alfimov, M. Scalora, and A. M. Zheltikov, Phys. Rev. E 72, 027601 (2005).
[CrossRef]

Joly, N. Y.

Knight, J. C.

Konorov, S. O.

E. E. Serebryannikov, S. O. Konorov, A. A. Ivanov, M. V. Alfimov, M. Scalora, and A. M. Zheltikov, Phys. Rev. E 72, 027601 (2005).
[CrossRef]

Kruhlak, R. J.

Leonhardt, R.

Murdoch, S. G.

Parola, A.

L. Salasnich, A. Parola, and L. Reatto, Phys. Rev. Lett. 91, 080405 (2003).
[CrossRef]

Reatto, L.

L. Salasnich, A. Parola, and L. Reatto, Phys. Rev. Lett. 91, 080405 (2003).
[CrossRef]

Russell, P. St. J.

Salasnich, L.

L. Salasnich, A. Parola, and L. Reatto, Phys. Rev. Lett. 91, 080405 (2003).
[CrossRef]

Scalora, M.

E. E. Serebryannikov, S. O. Konorov, A. A. Ivanov, M. V. Alfimov, M. Scalora, and A. M. Zheltikov, Phys. Rev. E 72, 027601 (2005).
[CrossRef]

Serebryannikov, E. E.

E. E. Serebryannikov, S. O. Konorov, A. A. Ivanov, M. V. Alfimov, M. Scalora, and A. M. Zheltikov, Phys. Rev. E 72, 027601 (2005).
[CrossRef]

Tainuti, T.

T. Tainuti and H. Washimi, Phys. Rev. Lett. 21, 209 (1968).
[CrossRef]

Talanov, V. I.

V. I. Bespalov and V. I. Talanov, JETP Lett. 3, 307 (1966).

Wadsworth, W. J.

Washimi, H.

T. Tainuti and H. Washimi, Phys. Rev. Lett. 21, 209 (1968).
[CrossRef]

Wong, G. K.

Wong, G. K. L.

Zheltikov, A. M.

A. M. Zheltikov, JETP Lett. 85, 539 (2007).
[CrossRef]

A. M. Zheltikov, Phys. Uspekhi 49, 605 (2006).
[CrossRef]

E. E. Serebryannikov, S. O. Konorov, A. A. Ivanov, M. V. Alfimov, M. Scalora, and A. M. Zheltikov, Phys. Rev. E 72, 027601 (2005).
[CrossRef]

JETP Lett.

V. I. Bespalov and V. I. Talanov, JETP Lett. 3, 307 (1966).

A. M. Zheltikov, JETP Lett. 85, 539 (2007).
[CrossRef]

Opt. Lett.

Phys. Rev. E

E. E. Serebryannikov, S. O. Konorov, A. A. Ivanov, M. V. Alfimov, M. Scalora, and A. M. Zheltikov, Phys. Rev. E 72, 027601 (2005).
[CrossRef]

Phys. Rev. Lett.

T. Tainuti and H. Washimi, Phys. Rev. Lett. 21, 209 (1968).
[CrossRef]

L. Salasnich, A. Parola, and L. Reatto, Phys. Rev. Lett. 91, 080405 (2003).
[CrossRef]

Phys. Uspekhi

A. M. Zheltikov, Phys. Uspekhi 49, 605 (2006).
[CrossRef]

Proc. R. Soc. Math. Phys. Eng. Sci

T. B. Benjamin, Proc. R. Soc. Math. Phys. Eng. Sci 299, 59 (1967).
[CrossRef]

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Science

P. St. J. Russell, Science 299, 358 (2003).
[CrossRef]

Other

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Power of ultrashort laser pulses transmitted through the fiber measured (circles and triangles) and simulated (dotted and dashed curves) as a function of the angle θ between the axis of the polarization analyzer and the fast axis of the fiber. The input laser field with λ0=1440nm and τ0=100fs is polarized along the (a) fast and (b) slow fiber axis. The input pulse energy in the fundamental spatial mode E0 is (a) 0.45 nJ (dotted curve, triangles) and 5 nJ (dashed curve, circles), (b) 0.3 nJ (dotted curve, triangles) and 4.5 nJ (dashed curve, circles).

Fig. 2.
Fig. 2.

The spectra measured (solid curves) and simulated (dashed curves) at the output of the fiber with (a) θ=0 (curve 1) and π/2 (curve 2); (b) θ=π/4. The input laser field with λ0=1440nm, τ0=100fs, and E0=4nJ is polarized along the fast fiber axis. The input spectrum is shown by the dotted curve with shading.

Fig. 3.
Fig. 3.

The (a) spectral and (b) temporal dynamics of a light pulse with τ0=100fs, P0=35Pcr, φ=0.035, and θ=π/4 propagating through the fiber. Poincaré-sphere maps of polarization dynamics in the same fiber for φ=0.035 and (c) a pulse with τ0=100fs and (1) P0=0.2Pcr, a (2) cw field with P0=35Pcr, a (3) pulse with τ0=100fs and P0=35Pcr and (d) a pulse with τ0=100fs, P0=35Pcr, and (1) φ=0.001, (2) φ=0.01, and (3) φ=0.035. Also shown are the points I and X, corresponding to the fiber input and fiber output in the experiments, and point R, where the peak power in each polarization mode becomes less than Pcr, as well as the Poincaré-sphere poles corresponding to an input field with a linear polarization along the fast (LP, FPA) and slow (LP, SPA) fiber axes and at an angle φ=π/4 (LP, 45°) and φ=π/4 (LP, 45°) relative to the fast fiber axis, as well as an input field with a right- (RC) and left-hand (LC) circular polarization.

Metrics