Abstract
Multiple plasmon-induced transparencies are numerically predicted in an ultracompact plasmonic structure, comprising series of stub resonators side-coupled with a metal-isolator-metal waveguide. Because of the phase-coupled effect, electromagnetically induced transparency (EIT)-like spectral response occurs between two adjacent stub resonators with detuned resonant wavelengths. In this approach, multiple EIT-like spectral responses, with bandwidths of the order of several nanometers, are obtained in the plasmonic structure with a small footprint of about . An analytic model and the relative phase analysis based on the scattering matrix theory are used to explain this phenomenon.
© 2012 Optical Society of America
Full Article | PDF ArticleOSA Recommended Articles
Jing Guo
Appl. Opt. 53(8) 1604-1609 (2014)
Guangtao Cao, Hongjian Li, Yan Deng, Shiping Zhan, Zhihui He, and Boxun Li
Opt. Express 22(21) 25215-25223 (2014)
Ling-Yan He, Tie-Jun Wang, Yong-Pan Gao, Cong Cao, and Chuan Wang
Opt. Express 23(18) 23817-23826 (2015)