Abstract

Multiple plasmon-induced transparencies are numerically predicted in an ultracompact plasmonic structure, comprising series of stub resonators side-coupled with a metal-isolator-metal waveguide. Because of the phase-coupled effect, electromagnetically induced transparency (EIT)-like spectral response occurs between two adjacent stub resonators with detuned resonant wavelengths. In this approach, multiple EIT-like spectral responses, with bandwidths of the order of several nanometers, are obtained in the plasmonic structure with a small footprint of about 0.6μm2. An analytic model and the relative phase analysis based on the scattering matrix theory are used to explain this phenomenon.

© 2012 Optical Society of America

Full Article  |  PDF Article
Related Articles
Fano-type spectral asymmetry and its control for plasmonic metal-insulator-metal stub structures

Xianji Piao, Sunkyu Yu, Sukmo Koo, Kwanghee Lee, and Namkyoo Park
Opt. Express 19(11) 10907-10912 (2011)

Slow light engineering in periodic-stub-assisted plasmonic waveguide

Guoxi Wang
Appl. Opt. 52(9) 1799-1804 (2013)

Formation and evolution mechanisms of plasmon-induced transparency in MDM waveguide with two stub resonators

Guangtao Cao, Hongjian Li, Shiping Zhan, Haiqing Xu, Zhimin Liu, Zhihui He, and Yun Wang
Opt. Express 21(8) 9198-9205 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription