Abstract

We demonstrate a single-frequency, room temperature Cr2+:ZnSe laser widely tunable in the mid-infrared spectral region from 2.12 to 2.58 μm. Using a compact unidirectional ring cavity configuration, we obtain a maximum output power of 160 mW with an emission linewidth of 100kHz in a 1 ms observation time. As a result, we can accurately report amplitude- and frequency-noise characterizations.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, IEEE J. Quantum Electron. 32, 885 (1996).
    [CrossRef]
  2. R. H. Page, J. A. Skidmore, K. I. Schaffers, R. J. Beach, S. A. Payne, and W. F. Krupke, in Advanced Solid State Lasers (Optical Society of America, 1997), pp. 208–210.
  3. S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, Laser Photon. Rev. 4, 21 (2010).
    [CrossRef]
  4. I. S. Moskalev, V. V. Fedorov, and S. B. Mirov, Opt. Express 16, 4145 (2008).
    [CrossRef]
  5. http://www.ipgphotonics.com/SFTL_Series.htm
  6. C. C. Harb, T. C. Ralph, E. H. Huntington, D. E. McClelland, H. A. Bachor, and I. Freitag, J. Opt. Soc. Am. B 14, 2936 (1997).
    [CrossRef]
  7. N. Coluccelli, H. Fonnum, M. Haakestad, A. Gambetta, D. Gatti, M. Marangoni, P. Laporta, and G. Galzerano, Opt. Express 20, 22042 (2012).
    [CrossRef]
  8. R. L. Barger, M. S. Sorem, and J. L. Hall, Appl. Phys. Lett. 22, 573 (1973).
    [CrossRef]
  9. E. Bava, G. Galzerano, and C. Svelto, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 1150 (2002).
    [CrossRef]
  10. D. S. Elliott, R. Roy, and S. J. Smith, Phys. Rev. A 26, 12 (1982).
    [CrossRef]
  11. G. Di Domenico, S. Schilt, and P. Thomann, Appl. Opt. 49, 4801 (2010).
    [CrossRef]

2012 (1)

2010 (2)

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, Laser Photon. Rev. 4, 21 (2010).
[CrossRef]

G. Di Domenico, S. Schilt, and P. Thomann, Appl. Opt. 49, 4801 (2010).
[CrossRef]

2008 (1)

2002 (1)

E. Bava, G. Galzerano, and C. Svelto, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 1150 (2002).
[CrossRef]

1997 (1)

1996 (1)

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, IEEE J. Quantum Electron. 32, 885 (1996).
[CrossRef]

1982 (1)

D. S. Elliott, R. Roy, and S. J. Smith, Phys. Rev. A 26, 12 (1982).
[CrossRef]

1973 (1)

R. L. Barger, M. S. Sorem, and J. L. Hall, Appl. Phys. Lett. 22, 573 (1973).
[CrossRef]

Bachor, H. A.

Barger, R. L.

R. L. Barger, M. S. Sorem, and J. L. Hall, Appl. Phys. Lett. 22, 573 (1973).
[CrossRef]

Bava, E.

E. Bava, G. Galzerano, and C. Svelto, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 1150 (2002).
[CrossRef]

Beach, R. J.

R. H. Page, J. A. Skidmore, K. I. Schaffers, R. J. Beach, S. A. Payne, and W. F. Krupke, in Advanced Solid State Lasers (Optical Society of America, 1997), pp. 208–210.

Coluccelli, N.

DeLoach, L. D.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, IEEE J. Quantum Electron. 32, 885 (1996).
[CrossRef]

Di Domenico, G.

Elliott, D. S.

D. S. Elliott, R. Roy, and S. J. Smith, Phys. Rev. A 26, 12 (1982).
[CrossRef]

Fedorov, V.

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, Laser Photon. Rev. 4, 21 (2010).
[CrossRef]

Fedorov, V. V.

Fonnum, H.

Freitag, I.

Galzerano, G.

N. Coluccelli, H. Fonnum, M. Haakestad, A. Gambetta, D. Gatti, M. Marangoni, P. Laporta, and G. Galzerano, Opt. Express 20, 22042 (2012).
[CrossRef]

E. Bava, G. Galzerano, and C. Svelto, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 1150 (2002).
[CrossRef]

Gambetta, A.

Gatti, D.

Haakestad, M.

Hall, J. L.

R. L. Barger, M. S. Sorem, and J. L. Hall, Appl. Phys. Lett. 22, 573 (1973).
[CrossRef]

Harb, C. C.

Huntington, E. H.

Kim, C.

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, Laser Photon. Rev. 4, 21 (2010).
[CrossRef]

Krupke, W. F.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, IEEE J. Quantum Electron. 32, 885 (1996).
[CrossRef]

R. H. Page, J. A. Skidmore, K. I. Schaffers, R. J. Beach, S. A. Payne, and W. F. Krupke, in Advanced Solid State Lasers (Optical Society of America, 1997), pp. 208–210.

Laporta, P.

Marangoni, M.

Martyshkin, D.

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, Laser Photon. Rev. 4, 21 (2010).
[CrossRef]

McClelland, D. E.

Mirov, S.

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, Laser Photon. Rev. 4, 21 (2010).
[CrossRef]

Mirov, S. B.

Moskalev, I.

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, Laser Photon. Rev. 4, 21 (2010).
[CrossRef]

Moskalev, I. S.

Page, R. H.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, IEEE J. Quantum Electron. 32, 885 (1996).
[CrossRef]

R. H. Page, J. A. Skidmore, K. I. Schaffers, R. J. Beach, S. A. Payne, and W. F. Krupke, in Advanced Solid State Lasers (Optical Society of America, 1997), pp. 208–210.

Payne, S. A.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, IEEE J. Quantum Electron. 32, 885 (1996).
[CrossRef]

R. H. Page, J. A. Skidmore, K. I. Schaffers, R. J. Beach, S. A. Payne, and W. F. Krupke, in Advanced Solid State Lasers (Optical Society of America, 1997), pp. 208–210.

Ralph, T. C.

Roy, R.

D. S. Elliott, R. Roy, and S. J. Smith, Phys. Rev. A 26, 12 (1982).
[CrossRef]

Schaffers, K. I.

R. H. Page, J. A. Skidmore, K. I. Schaffers, R. J. Beach, S. A. Payne, and W. F. Krupke, in Advanced Solid State Lasers (Optical Society of America, 1997), pp. 208–210.

Schilt, S.

Skidmore, J. A.

R. H. Page, J. A. Skidmore, K. I. Schaffers, R. J. Beach, S. A. Payne, and W. F. Krupke, in Advanced Solid State Lasers (Optical Society of America, 1997), pp. 208–210.

Smith, S. J.

D. S. Elliott, R. Roy, and S. J. Smith, Phys. Rev. A 26, 12 (1982).
[CrossRef]

Sorem, M. S.

R. L. Barger, M. S. Sorem, and J. L. Hall, Appl. Phys. Lett. 22, 573 (1973).
[CrossRef]

Svelto, C.

E. Bava, G. Galzerano, and C. Svelto, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 1150 (2002).
[CrossRef]

Thomann, P.

Wilke, G. D.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, IEEE J. Quantum Electron. 32, 885 (1996).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. L. Barger, M. S. Sorem, and J. L. Hall, Appl. Phys. Lett. 22, 573 (1973).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, IEEE J. Quantum Electron. 32, 885 (1996).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

E. Bava, G. Galzerano, and C. Svelto, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 1150 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, Laser Photon. Rev. 4, 21 (2010).
[CrossRef]

Opt. Express (2)

Phys. Rev. A (1)

D. S. Elliott, R. Roy, and S. J. Smith, Phys. Rev. A 26, 12 (1982).
[CrossRef]

Other (2)

http://www.ipgphotonics.com/SFTL_Series.htm

R. H. Page, J. A. Skidmore, K. I. Schaffers, R. J. Beach, S. A. Payne, and W. F. Krupke, in Advanced Solid State Lasers (Optical Society of America, 1997), pp. 208–210.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Scheme of the Cr:ZnSe ring laser and setup for beat note characterization. ECDL, extended-cavity diode laser; λ / 2 -plate, half-wave plate; and SP-OPO, synchronously pumped optical parametric oscillator.

Fig. 2.
Fig. 2.

Single-frequency Cr:ZnSe laser performance. (a) Output power versus emission wavelength. (b) Output spectra obtained with the FP interferometer for output power levels of 20, 80, and 160 mW.

Fig. 3.
Fig. 3.

RIN (left) and cumulative standard deviation (right) of the single-frequency Cr:ZnSe laser compared to the pump laser source.

Fig. 4.
Fig. 4.

RF spectrum of the beat note between the single-frequency Cr:ZnSe laser and the synchronously Er-fiber pumped OPO. Inset: Detail of the beat note at 30 MHz showing a 1 ms linewidth of 89 kHz.

Fig. 5.
Fig. 5.

Cr:ZnSe laser frequency noise spectral density together with the β -line, given by S Δ ν ( f ) = ( 8 ln 2 ) f / π 2 (left) [11]. Laser linewidth (FWHM) obtained by numerical integration of frequency noise spectrum (red curve) and by the approximated formula in [11] (right).

Metrics