Abstract

A high-power, passively mode-locked, Er-doped fiber laser with a single wall carbon nanotube polyimide film was demonstrated in dispersion-managed dissipative-soliton mode-locking operation. The average maximum power of 285 mW and a pulse energy of 8.1 nJ are the highest values yet achieved for single-pulse operation in a nanotube fiber laser. A high-power ultrashort pulse of 680 fs was generated by dispersion compensation at a repetition rate of 34.9 MHz. Passive mode-locking was numerically analyzed, and the dynamics and output properties are discussed.

© 2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dispersion-managed, high-power, Er-doped ultrashort-pulse fiber laser using carbon-nanotube polyimide film

N. Nishizawa, Y. Nozaki, E. Itoga, H. Kataura, and Y. Sakakibara
Opt. Express 19(22) 21874-21879 (2011)

All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber

N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura, and K. Itoh
Opt. Express 16(13) 9429-9435 (2008)

Ultralow-repetition-rate, high-energy, polarization-maintaining, Er-doped, ultrashort-pulse fiber laser using single-wall-carbon-nanotube saturable absorber

Y. Senoo, N. Nishizawa, Y. Sakakibara, K. Sumimura, E. Itoga, H. Kataura, and K. Itoh
Opt. Express 18(20) 20673-20680 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription