Abstract

We report a high-power, single-frequency, continuous-wave (cw) source tunable across 775–807 nm in the near-infrared, based on internal second harmonic generation (SHG) of a cw singly-resonant optical parametric oscillator (OPO) pumped by a Yb-fiber laser. The compact, all-periodically-poled source employs a 48-mm-long, multigrating MgO doped periodically poled lithium niobate (MgO:PPLN) crystal for the OPO and a 30-mm-long, fan-out grating MgO-doped stoichiometric periodically poled lithium tantalate (MgO:sPPLT) crystal for intracavity SHG, providing as much as 3.7 W of near-infrared power at 793 nm, together with 4 W of idler power at 3232 nm, at an overall extraction efficiency of 28%. Further, the cw OPO is tunable across 3125–3396 nm in the idler, providing as much as 4.3 W at 3133 nm with >3.8W over 77% of the tuning range together with >3W of near-infrared power across 56% of SHG tuning range, in high-spatial beam-quality with M2<1.4. The SHG output has an instantaneous linewidth of 8.5 MHz and exhibits a passive power stability better than 3.5% rms over more than 1 min.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Scheidt, B. Beier, K.-J. Boller, and R. Wallenstein, Opt. Lett. 22, 1287 (1997).
    [CrossRef]
  2. C.-F. Cheng, Y. R. Sun, H. Pan, Y. Lu, X.-F. Li, J. Wang, A.-W. Liu, and S.-M. Hu, Opt. Express 20, 9956 (2012).
    [CrossRef]
  3. G. K. Samanta, S. Chaitanya Kumar, K. Devi, and M. Ebrahim-Zadeh, Opt. Lasers Eng. 50, 215 (2012).
    [CrossRef]
  4. S. Chaitanya Kumar, G. K. Samanta, K. Devi, S. Sanguinetti, and M. Ebrahim-Zadeh, Appl. Opt. 51, 15 (2012).
    [CrossRef]
  5. K. Devi, S. Chaitanya Kumar, and M. Ebrahim-Zadeh, Opt. Express 19, 11631 (2011).
    [CrossRef]
  6. G. K. Samanta and M. Ebrahim-Zadeh, Opt. Express 16, 6883 (2008).
    [CrossRef]
  7. U. Strossner, J.-P. Meyn, R. Wallenstein, P. Urenski, A. Arie, G. Rosenman, J. Mlynek, S. Schiller, and A. Peters, J. Opt. Soc. Am. B 19, 1419 (2002).
    [CrossRef]
  8. W. R. Bosenberg, J. I. Alexander, L. E. Myers, and R. W. Wallace, Opt. Lett. 23, 207 (1998).
    [CrossRef]
  9. S. Chaitanya Kumar, O. Kimmelma, and M. Ebrahim-Zadeh, Opt. Lett. 37, 1577 (2012).
    [CrossRef]
  10. S. Chaitanya Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, Appl. Phys. B 102, 31 (2011).
    [CrossRef]
  11. P. E. Powers, T. J. Kulp, and S. E. Bisson, Opt. Lett. 23, 159 (1998).
    [CrossRef]
  12. A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, Opt. Lett. 28, 194 (2003).
    [CrossRef]
  13. K. Devi, S. Chaitanya Kumar, A. Esteban-Martin, and M. Ebrahim-Zadeh, Opt. Express 20, 19313 (2012).
    [CrossRef]

2012 (5)

2011 (2)

S. Chaitanya Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, Appl. Phys. B 102, 31 (2011).
[CrossRef]

K. Devi, S. Chaitanya Kumar, and M. Ebrahim-Zadeh, Opt. Express 19, 11631 (2011).
[CrossRef]

2008 (1)

2003 (1)

2002 (1)

1998 (2)

1997 (1)

Alexander, J. I.

Arie, A.

Beier, B.

Bisson, S. E.

Blau, P.

Boller, K.-J.

Bosenberg, W. R.

Bruner, A.

Chaitanya Kumar, S.

Cheng, C.-F.

Das, R.

S. Chaitanya Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, Appl. Phys. B 102, 31 (2011).
[CrossRef]

Devi, K.

Ebrahim-Zadeh, M.

Eger, D.

Esteban-Martin, A.

Hu, S.-M.

Katz, M.

Kimmelma, O.

Kulp, T. J.

Li, X.-F.

Liu, A.-W.

Lu, Y.

Meyn, J.-P.

Mlynek, J.

Myers, L. E.

Oron, M. B.

Pan, H.

Peters, A.

Powers, P. E.

Rosenman, G.

Ruschin, S.

Samanta, G. K.

G. K. Samanta, S. Chaitanya Kumar, K. Devi, and M. Ebrahim-Zadeh, Opt. Lasers Eng. 50, 215 (2012).
[CrossRef]

S. Chaitanya Kumar, G. K. Samanta, K. Devi, S. Sanguinetti, and M. Ebrahim-Zadeh, Appl. Opt. 51, 15 (2012).
[CrossRef]

S. Chaitanya Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, Appl. Phys. B 102, 31 (2011).
[CrossRef]

G. K. Samanta and M. Ebrahim-Zadeh, Opt. Express 16, 6883 (2008).
[CrossRef]

Sanguinetti, S.

Scheidt, M.

Schiller, S.

Strossner, U.

Sun, Y. R.

Urenski, P.

Wallace, R. W.

Wallenstein, R.

Wang, J.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the intracavity frequency-doubled cw OPO. FI, Faraday isolator; λ/2, half-wave-plate; PBS, polarizing beam-splitter; L, lens; M16, cavity mirrors; M and M, dichroic mirrors.

Fig. 2.
Fig. 2.

(a) Variation of SHG power as a function of SHG wavelength. Inset: theoretical SHG (i) grating tuning range and (ii) temperature tuning range in present setup. (b) Variation of idler power and corresponding pump depletion across the idler tuning range.

Fig. 3.
Fig. 3.

Variation of SHG power, idler output power, and pump depletion as a function of pump power. Inset: signal power scaling.

Fig. 4.
Fig. 4.

Simultaneously recorded passive power stability of (a) SHG and (b) idler output from the SRO. (c) Single-frequency spectrum and (d) far-field energy distribution of generated SHG at 801 nm for pump power of 27.4 W.

Metrics