Abstract

Methods of controllable, noncontact rotation of optically trapped microscopic objects have garnered significant attention for tomographic imaging and microfluidic actuation. Here, we report development of a fiber-optic spanner and demonstrate controlled rotation of smooth muscle cells. The rotation is realized by introducing a transverse offset between two counterpropagating beams emanating from single-mode optical fibers. The rotation speed and surrounding microfluidic flow could be controlled by varying balanced laser beam powers. Further, we demonstrate simultaneous translation and rotation of the fiber-optically trapped cell by varying the laser power of one fiber-optic arm.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Van Thourhout and J. Roels, Nat. Photonics 4, 211 (2010).
    [CrossRef]
  2. G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, Nat. Photonics 5, 48 (2011).
    [CrossRef]
  3. D. Baigl, Lab Chip 12, 3637 (2012).
    [CrossRef]
  4. S. Mohanty, Lab Chip 12, 3624 (2012).
    [CrossRef]
  5. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).
    [CrossRef]
  6. P. Galajda and P. Ormos, Appl. Phys. Lett. 78, 249 (2001).
    [CrossRef]
  7. S. K. Mohanty, A. Uppal, and P. K. Gupta, Biotechnol. Lett. 26, 971 (2004).
    [CrossRef]
  8. R. Dasgupta, S. K. Mohanty, and P. K. Gupta, Biotechnol. Lett. 25, 1625 (2003).
    [CrossRef]
  9. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Nature 394, 348 (1998).
    [CrossRef]
  10. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
    [CrossRef]
  11. M. Padgett and R. Bowman, Nat. Photonics 5, 343 (2011).
    [CrossRef]
  12. V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, Appl. Phys. Lett. 82, 829 (2003).
    [CrossRef]
  13. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, Opt. Lett. 18, 1867 (1993).
    [CrossRef]
  14. S. K. Mohanty, K. S. Mohanty, and M. W. Berns, J. Biomed. Opt. 13054049 (2008).
    [CrossRef]
  15. M. K. Kreysing, T. Kießling, A. Fritsch, C. Dietrich, J. R. Guck, and J. A. Käs, Opt. Express 16, 16984 (2008).
    [CrossRef]
  16. K. S. Abedin, C. Kerbage, A. Fernandez-Nieves, and D. A. Weitz, Appl. Phys. Lett. 91, 091119 (2007).
    [CrossRef]
  17. N. Cardenas, L. Yu, and S. K. Mohanty, Proc. SPIE 7906, 790613 (2011).
    [CrossRef]

2012 (2)

D. Baigl, Lab Chip 12, 3637 (2012).
[CrossRef]

S. Mohanty, Lab Chip 12, 3624 (2012).
[CrossRef]

2011 (3)

N. Cardenas, L. Yu, and S. K. Mohanty, Proc. SPIE 7906, 790613 (2011).
[CrossRef]

G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, Nat. Photonics 5, 48 (2011).
[CrossRef]

M. Padgett and R. Bowman, Nat. Photonics 5, 343 (2011).
[CrossRef]

2010 (1)

D. Van Thourhout and J. Roels, Nat. Photonics 4, 211 (2010).
[CrossRef]

2008 (2)

2007 (1)

K. S. Abedin, C. Kerbage, A. Fernandez-Nieves, and D. A. Weitz, Appl. Phys. Lett. 91, 091119 (2007).
[CrossRef]

2004 (1)

S. K. Mohanty, A. Uppal, and P. K. Gupta, Biotechnol. Lett. 26, 971 (2004).
[CrossRef]

2003 (2)

R. Dasgupta, S. K. Mohanty, and P. K. Gupta, Biotechnol. Lett. 25, 1625 (2003).
[CrossRef]

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, Appl. Phys. Lett. 82, 829 (2003).
[CrossRef]

2001 (1)

P. Galajda and P. Ormos, Appl. Phys. Lett. 78, 249 (2001).
[CrossRef]

1998 (1)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Nature 394, 348 (1998).
[CrossRef]

1995 (1)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
[CrossRef]

1993 (1)

1986 (1)

Abedin, K. S.

K. S. Abedin, C. Kerbage, A. Fernandez-Nieves, and D. A. Weitz, Appl. Phys. Lett. 91, 091119 (2007).
[CrossRef]

Artusio-Glimpse, A. B.

G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, Nat. Photonics 5, 48 (2011).
[CrossRef]

Ashkin, A.

Baigl, D.

D. Baigl, Lab Chip 12, 3637 (2012).
[CrossRef]

Berns, M. W.

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, J. Biomed. Opt. 13054049 (2008).
[CrossRef]

Bingelyte, V.

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, Appl. Phys. Lett. 82, 829 (2003).
[CrossRef]

Bjorkholm, J. E.

Bowman, R.

M. Padgett and R. Bowman, Nat. Photonics 5, 343 (2011).
[CrossRef]

Cardenas, N.

N. Cardenas, L. Yu, and S. K. Mohanty, Proc. SPIE 7906, 790613 (2011).
[CrossRef]

Chu, S.

Constable, A.

Courtial, J.

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, Appl. Phys. Lett. 82, 829 (2003).
[CrossRef]

Dasgupta, R.

R. Dasgupta, S. K. Mohanty, and P. K. Gupta, Biotechnol. Lett. 25, 1625 (2003).
[CrossRef]

Dietrich, C.

Dziedzic, J. M.

Fernandez-Nieves, A.

K. S. Abedin, C. Kerbage, A. Fernandez-Nieves, and D. A. Weitz, Appl. Phys. Lett. 91, 091119 (2007).
[CrossRef]

Friese, M. E. J.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Nature 394, 348 (1998).
[CrossRef]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
[CrossRef]

Fritsch, A.

Galajda, P.

P. Galajda and P. Ormos, Appl. Phys. Lett. 78, 249 (2001).
[CrossRef]

Guck, J. R.

Gupta, P. K.

S. K. Mohanty, A. Uppal, and P. K. Gupta, Biotechnol. Lett. 26, 971 (2004).
[CrossRef]

R. Dasgupta, S. K. Mohanty, and P. K. Gupta, Biotechnol. Lett. 25, 1625 (2003).
[CrossRef]

He, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
[CrossRef]

Heckenberg, N. R.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Nature 394, 348 (1998).
[CrossRef]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
[CrossRef]

Käs, J. A.

Kerbage, C.

K. S. Abedin, C. Kerbage, A. Fernandez-Nieves, and D. A. Weitz, Appl. Phys. Lett. 91, 091119 (2007).
[CrossRef]

Kießling, T.

Kim, J.

Kreysing, M. K.

Leach, J.

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, Appl. Phys. Lett. 82, 829 (2003).
[CrossRef]

Mervis, J.

Mohanty, K. S.

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, J. Biomed. Opt. 13054049 (2008).
[CrossRef]

Mohanty, S.

S. Mohanty, Lab Chip 12, 3624 (2012).
[CrossRef]

Mohanty, S. K.

N. Cardenas, L. Yu, and S. K. Mohanty, Proc. SPIE 7906, 790613 (2011).
[CrossRef]

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, J. Biomed. Opt. 13054049 (2008).
[CrossRef]

S. K. Mohanty, A. Uppal, and P. K. Gupta, Biotechnol. Lett. 26, 971 (2004).
[CrossRef]

R. Dasgupta, S. K. Mohanty, and P. K. Gupta, Biotechnol. Lett. 25, 1625 (2003).
[CrossRef]

Nieminen, T. A.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Nature 394, 348 (1998).
[CrossRef]

Ormos, P.

P. Galajda and P. Ormos, Appl. Phys. Lett. 78, 249 (2001).
[CrossRef]

Padgett, M.

M. Padgett and R. Bowman, Nat. Photonics 5, 343 (2011).
[CrossRef]

Padgett, M. J.

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, Appl. Phys. Lett. 82, 829 (2003).
[CrossRef]

Peterson, T. J.

G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, Nat. Photonics 5, 48 (2011).
[CrossRef]

Prentiss, M.

Raisanen, A. D.

G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, Nat. Photonics 5, 48 (2011).
[CrossRef]

Roels, J.

D. Van Thourhout and J. Roels, Nat. Photonics 4, 211 (2010).
[CrossRef]

Rubinsztein-Dunlop, H.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Nature 394, 348 (1998).
[CrossRef]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
[CrossRef]

Swartzlander, G. A.

G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, Nat. Photonics 5, 48 (2011).
[CrossRef]

Uppal, A.

S. K. Mohanty, A. Uppal, and P. K. Gupta, Biotechnol. Lett. 26, 971 (2004).
[CrossRef]

Van Thourhout, D.

D. Van Thourhout and J. Roels, Nat. Photonics 4, 211 (2010).
[CrossRef]

Weitz, D. A.

K. S. Abedin, C. Kerbage, A. Fernandez-Nieves, and D. A. Weitz, Appl. Phys. Lett. 91, 091119 (2007).
[CrossRef]

Yu, L.

N. Cardenas, L. Yu, and S. K. Mohanty, Proc. SPIE 7906, 790613 (2011).
[CrossRef]

Zarinetchi, F.

Appl. Phys. Lett. (3)

P. Galajda and P. Ormos, Appl. Phys. Lett. 78, 249 (2001).
[CrossRef]

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, Appl. Phys. Lett. 82, 829 (2003).
[CrossRef]

K. S. Abedin, C. Kerbage, A. Fernandez-Nieves, and D. A. Weitz, Appl. Phys. Lett. 91, 091119 (2007).
[CrossRef]

Biotechnol. Lett. (2)

S. K. Mohanty, A. Uppal, and P. K. Gupta, Biotechnol. Lett. 26, 971 (2004).
[CrossRef]

R. Dasgupta, S. K. Mohanty, and P. K. Gupta, Biotechnol. Lett. 25, 1625 (2003).
[CrossRef]

J. Biomed. Opt. (1)

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, J. Biomed. Opt. 13054049 (2008).
[CrossRef]

Lab Chip (2)

D. Baigl, Lab Chip 12, 3637 (2012).
[CrossRef]

S. Mohanty, Lab Chip 12, 3624 (2012).
[CrossRef]

Nat. Photonics (3)

D. Van Thourhout and J. Roels, Nat. Photonics 4, 211 (2010).
[CrossRef]

G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, Nat. Photonics 5, 48 (2011).
[CrossRef]

M. Padgett and R. Bowman, Nat. Photonics 5, 343 (2011).
[CrossRef]

Nature (1)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Nature 394, 348 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
[CrossRef]

Proc. SPIE (1)

N. Cardenas, L. Yu, and S. K. Mohanty, Proc. SPIE 7906, 790613 (2011).
[CrossRef]

Supplementary Material (2)

» Media 1: AVI (5988 KB)     
» Media 2: AVI (1778 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Principle of fiber-optic spanner comprised of transversely offset fibers. (b) Schematic of the sample delivery and fiber geometry. (c) Fiber-optically trapped and rotated hSMC in center of two transversely offset fibers (20 mW in each arm).

Fig. 2.
Fig. 2.

Fiber-optic rotation of hSMC (Media 1). (a) Time-lapse images of fiber-optic trapping and rotation of the hSMC. (b) Angular displacement of the rotating cell as a function of time at a balanced laser power of 12.5 mW from each beam. (c) Angular displacement of the tracer particle (circled) in the flow generated by the fiber-optically rotated cell as a function of time.

Fig. 3.
Fig. 3.

(a) Time-lapse images of simultaneous translation and rotation of fiber-optically trapped hSMC by varying the laser power of the left beam (Media 2). (b) Displacement of the rotating cell as a function of time achieved by decreasing the left arm laser power from 20 mW (0 s) to 10 mW (22 s). (c) Angular displacement of a marked region of the cell as a function of time. (d) Correlation histogram of linear and angular displacement of the cell as a function of time during simultaneous rotation and translation.

Metrics