Abstract

In this study, we proposed a simple and fast numerical approach to compensate for aberrations induced by objective phase curvature. This method is based on the extraction of virtual background phase from reconstructed phase values using a line profile, followed by subtraction of the virtual background phase from the reconstructed phase image. The performance and feasibility of the method were demonstrated by applying it to the phase imaging of polystyrene microspheres and red blood cells.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Mann, L. F. Yu, C. M. Lo, and M. K. Kim, Opt. Express 13, 8693 (2005).
    [CrossRef]
  2. M. K. Kim, L. F. Yu, and C. J. Mann, J. Opt A Pure Appl. Opt. 8, S518 (2006).
    [CrossRef]
  3. A. Anand, V. K. Chhaniwal, and B. Javidi, J. Display Technology 6, 500 (2010).
    [CrossRef]
  4. D. Malacara, Optical Shop Testing (Wiley, 1992).
  5. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, Appl. Opt. 42, 1938 (2003).
    [CrossRef]
  6. T. Colomb, E. Cuche, F. Charriere, J. Kuhn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, Appl. Opt. 45, 851 (2006).
    [CrossRef]
  7. T. Colomb, F. Montfort, J. Kuhn, N. Aspert, E. Cuche, A. Marian, F. Charriere, S. Bourquin, P. Marquet, and C. Depeursinge, J. Opt. Soc. Am. A 23, 3177 (2006).
    [CrossRef]
  8. L. F. Yu and M. K. Kim, Opt. Lett. 30, 2092 (2005).
    [CrossRef]
  9. E. Cuche, P. Marquet, and C. Depeursinge, Appl. Opt. 38, 6994 (1999).
    [CrossRef]
  10. M. A. Herraez, D. R. Burton, M. J. Lalor, and M. A. Gdeisat, Appl. Opt. 41, 7437 (2002).
    [CrossRef]

2010

A. Anand, V. K. Chhaniwal, and B. Javidi, J. Display Technology 6, 500 (2010).
[CrossRef]

2006

2005

2003

2002

1999

Anand, A.

A. Anand, V. K. Chhaniwal, and B. Javidi, J. Display Technology 6, 500 (2010).
[CrossRef]

Aspert, N.

Bourquin, S.

Burton, D. R.

Charriere, F.

Chhaniwal, V. K.

A. Anand, V. K. Chhaniwal, and B. Javidi, J. Display Technology 6, 500 (2010).
[CrossRef]

Colomb, T.

Coppola, G.

Cuche, E.

De Nicola, S.

Depeursinge, C.

Ferraro, P.

Finizio, A.

Gdeisat, M. A.

Grilli, S.

Herraez, M. A.

Javidi, B.

A. Anand, V. K. Chhaniwal, and B. Javidi, J. Display Technology 6, 500 (2010).
[CrossRef]

Kim, M. K.

Kuhn, J.

Lalor, M. J.

Lo, C. M.

Magro, C.

Malacara, D.

D. Malacara, Optical Shop Testing (Wiley, 1992).

Mann, C. J.

M. K. Kim, L. F. Yu, and C. J. Mann, J. Opt A Pure Appl. Opt. 8, S518 (2006).
[CrossRef]

C. J. Mann, L. F. Yu, C. M. Lo, and M. K. Kim, Opt. Express 13, 8693 (2005).
[CrossRef]

Marian, A.

Marquet, P.

Montfort, F.

Pierattini, G.

Yu, L. F.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of the holographic phase microscopy. SF, special filter; BS, beam splitter; CL, collimation lens; C, condenser; MO, microscope objective lens; M, mirror.

Fig. 2.
Fig. 2.

(a) Raw hologram of microspheres. (b) Angular spectrum of the hologram. (c) Spatial filtering of real image in the angular spectrum. The real image was shifted to the center of the frequency domain. (d) Reconstructed phase map of (c). (e) Unwrapped phase map of (d). (f) 3D perspective of (e).

Fig. 3.
Fig. 3.

(a) Unwrapped phase map depicted by isophase lines. (b) Line profile along the red line in (a). (c) Virtual image of the background phase map obtained by revolving the line profile (b). (d) Phase map after subtraction of the background phase (c) from the unwrapped phase (a). (e) 3D perspective view of a microsphere surrounded by the square box in (d). (f) 3D perspective view of a microsphere without compensation.

Fig. 4.
Fig. 4.

(a) Hologram image of RBCs. (b) Reconstructed phase map. (c) Phase map after phase compensation. (d) 3D perspective of RBCs in (c).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A(kx,ky;0)=E0(x0,y0;0)exp[i(kxx0+kyy0)]dx0dy0,
E(x,y;z)=I1{filter[I{E0}]exp[ikzz]},kz=k2kx2ky2,
I(m,n)=Re[E(x,y;z)]2+Im[E(x,y;z)]2.
ϕ(m,n)=arctan{Im[E(x,y;z)]Re[E(x,yl;z)]}.
d=λ(ϕ/2π)/(nn0),

Metrics