Abstract

This research carries out coherence measurements of a 42.7 GHz quantum dash (QDash) semiconductor laser when passively, electrically, and optically mode-locked. Coherence of the spectral lines from the mode-locked laser is determined by examining the radio frequency beat-tone linewidth as the mode spacing is increased up to 1.1 THz. Electric-field measurements of the QDash laser are also presented, from which a comparison between experimental results and accepted theory for coherence in passively mode-locked lasers has been performed.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Drouin, F. W. Maiwald, and J. C. Pearson, Rev. Sci. Instrum. 76, 093113 (2005).
    [CrossRef]
  2. P. Siegel, IEEE Trans. Microwave Theory Tech. 50, 910 (2002).
    [CrossRef]
  3. G. Chattopadhyay, E. Schlecht, J. Ward, J. Gill, H. Javadi, F. Maiwald, and I. Mehdi, IEEE Trans. Microwave Theory Tech. 52, 1538 (2004).
    [CrossRef]
  4. P. Gellie, J.-F. Lampin, C. Sirtori, and S. Barbieri, Electron. Lett. 46, S60 (2010).
    [CrossRef]
  5. M. Ravaro, C. Manquest, C. Sirtori, S. Barbieri, G. Santarelli, K. Blary, J.-F. Lampin, S. P. Khanna, and E. H. Linfield, Opt. Lett. 36, 3969 (2011).
    [CrossRef]
  6. R. Rosales, S. G. Murdoch, R. T. Watts, K. Merghem, A. Martinez, F. Lelarge, A. Accard, L. P. Barry, and A. Ramdane, Opt. Express 20, 8649 (2012).
    [CrossRef]
  7. R. Watts, R. Rosales, F. LeLarge, A. Ramdane, and L. Barry, Opt. Lett. 37, 1499 (2012).
    [CrossRef]
  8. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, Nat. Photonics 1, 395 (2007).
    [CrossRef]
  9. N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, Y. Yoshioka, and H. Takai, Jpn. J. Appl. Phys. 51, 02BG08 (2012).
    [CrossRef]
  10. S. G. Murdoch, R. T. Watts, Y. Q. Xu, R. Maldonado-Basilio, J. Parra-Cetina, S. Latkowski, P. Landais, and L. P. Barry, Opt. Express 19, 13628 (2011).
    [CrossRef]
  11. F. X. Kartner, in Topics in Applied Physics (Springer, 2004).

2012 (3)

2011 (2)

2010 (1)

P. Gellie, J.-F. Lampin, C. Sirtori, and S. Barbieri, Electron. Lett. 46, S60 (2010).
[CrossRef]

2007 (1)

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, Nat. Photonics 1, 395 (2007).
[CrossRef]

2005 (1)

B. J. Drouin, F. W. Maiwald, and J. C. Pearson, Rev. Sci. Instrum. 76, 093113 (2005).
[CrossRef]

2004 (1)

G. Chattopadhyay, E. Schlecht, J. Ward, J. Gill, H. Javadi, F. Maiwald, and I. Mehdi, IEEE Trans. Microwave Theory Tech. 52, 1538 (2004).
[CrossRef]

2002 (1)

P. Siegel, IEEE Trans. Microwave Theory Tech. 50, 910 (2002).
[CrossRef]

Accard, A.

Akahane, K.

N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, Y. Yoshioka, and H. Takai, Jpn. J. Appl. Phys. 51, 02BG08 (2012).
[CrossRef]

Barbieri, S.

Barry, L.

Barry, L. P.

Blary, K.

Cataluna, M. A.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, Nat. Photonics 1, 395 (2007).
[CrossRef]

Chattopadhyay, G.

G. Chattopadhyay, E. Schlecht, J. Ward, J. Gill, H. Javadi, F. Maiwald, and I. Mehdi, IEEE Trans. Microwave Theory Tech. 52, 1538 (2004).
[CrossRef]

Drouin, B. J.

B. J. Drouin, F. W. Maiwald, and J. C. Pearson, Rev. Sci. Instrum. 76, 093113 (2005).
[CrossRef]

Gellie, P.

P. Gellie, J.-F. Lampin, C. Sirtori, and S. Barbieri, Electron. Lett. 46, S60 (2010).
[CrossRef]

Gill, J.

G. Chattopadhyay, E. Schlecht, J. Ward, J. Gill, H. Javadi, F. Maiwald, and I. Mehdi, IEEE Trans. Microwave Theory Tech. 52, 1538 (2004).
[CrossRef]

Javadi, H.

G. Chattopadhyay, E. Schlecht, J. Ward, J. Gill, H. Javadi, F. Maiwald, and I. Mehdi, IEEE Trans. Microwave Theory Tech. 52, 1538 (2004).
[CrossRef]

Kartner, F. X.

F. X. Kartner, in Topics in Applied Physics (Springer, 2004).

Kawanishi, T.

N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, Y. Yoshioka, and H. Takai, Jpn. J. Appl. Phys. 51, 02BG08 (2012).
[CrossRef]

Khanna, S. P.

Lampin, J.-F.

Landais, P.

Latkowski, S.

Lelarge, F.

Linfield, E. H.

Maiwald, F.

G. Chattopadhyay, E. Schlecht, J. Ward, J. Gill, H. Javadi, F. Maiwald, and I. Mehdi, IEEE Trans. Microwave Theory Tech. 52, 1538 (2004).
[CrossRef]

Maiwald, F. W.

B. J. Drouin, F. W. Maiwald, and J. C. Pearson, Rev. Sci. Instrum. 76, 093113 (2005).
[CrossRef]

Maldonado-Basilio, R.

Manquest, C.

Martinez, A.

Mehdi, I.

G. Chattopadhyay, E. Schlecht, J. Ward, J. Gill, H. Javadi, F. Maiwald, and I. Mehdi, IEEE Trans. Microwave Theory Tech. 52, 1538 (2004).
[CrossRef]

Merghem, K.

Murdoch, S. G.

Parra-Cetina, J.

Pearson, J. C.

B. J. Drouin, F. W. Maiwald, and J. C. Pearson, Rev. Sci. Instrum. 76, 093113 (2005).
[CrossRef]

Rafailov, E. U.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, Nat. Photonics 1, 395 (2007).
[CrossRef]

Ramdane, A.

Ravaro, M.

Rosales, R.

Santarelli, G.

Schlecht, E.

G. Chattopadhyay, E. Schlecht, J. Ward, J. Gill, H. Javadi, F. Maiwald, and I. Mehdi, IEEE Trans. Microwave Theory Tech. 52, 1538 (2004).
[CrossRef]

Sibbett, W.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, Nat. Photonics 1, 395 (2007).
[CrossRef]

Siegel, P.

P. Siegel, IEEE Trans. Microwave Theory Tech. 50, 910 (2002).
[CrossRef]

Sirtori, C.

Sotobayashi, H.

N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, Y. Yoshioka, and H. Takai, Jpn. J. Appl. Phys. 51, 02BG08 (2012).
[CrossRef]

Takai, H.

N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, Y. Yoshioka, and H. Takai, Jpn. J. Appl. Phys. 51, 02BG08 (2012).
[CrossRef]

Ward, J.

G. Chattopadhyay, E. Schlecht, J. Ward, J. Gill, H. Javadi, F. Maiwald, and I. Mehdi, IEEE Trans. Microwave Theory Tech. 52, 1538 (2004).
[CrossRef]

Watts, R.

Watts, R. T.

Xu, Y. Q.

Yamamoto, N.

N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, Y. Yoshioka, and H. Takai, Jpn. J. Appl. Phys. 51, 02BG08 (2012).
[CrossRef]

Yoshioka, Y.

N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, Y. Yoshioka, and H. Takai, Jpn. J. Appl. Phys. 51, 02BG08 (2012).
[CrossRef]

Electron. Lett. (1)

P. Gellie, J.-F. Lampin, C. Sirtori, and S. Barbieri, Electron. Lett. 46, S60 (2010).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

P. Siegel, IEEE Trans. Microwave Theory Tech. 50, 910 (2002).
[CrossRef]

G. Chattopadhyay, E. Schlecht, J. Ward, J. Gill, H. Javadi, F. Maiwald, and I. Mehdi, IEEE Trans. Microwave Theory Tech. 52, 1538 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (1)

N. Yamamoto, K. Akahane, T. Kawanishi, H. Sotobayashi, Y. Yoshioka, and H. Takai, Jpn. J. Appl. Phys. 51, 02BG08 (2012).
[CrossRef]

Nat. Photonics (1)

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, Nat. Photonics 1, 395 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

B. J. Drouin, F. W. Maiwald, and J. C. Pearson, Rev. Sci. Instrum. 76, 093113 (2005).
[CrossRef]

Other (1)

F. X. Kartner, in Topics in Applied Physics (Springer, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Quantum dash semiconductor (QDash) laser setup: (a) passively mode-locked, (b) electrically mode-locked using a 42.7 GHz RF synthesizer, (c) mode-locked by optical injection, using an ECL modulated with an MZM and 42.7 GHz RF synthesizer, and (d) optical spectrum of the passively mode-locked laser.

Fig. 2.
Fig. 2.

Pulses from the QDash laser as measured by OSO (red dots) and stepped heterodyne (solid blue curve) with ideal dispersion compensation. Inset reveals detail in the temporal distribution.

Fig. 3.
Fig. 3.

Experimental setup to measure RF linewidth of nonadjacent modes using suitable filtering, an optical downconversion technique, a 10 GHz photoreceiver, and real-time scope.

Fig. 4.
Fig. 4.

Measured RF beat-tone linewidth as a function of increasing spectral mode separation for passive and active mode-locking techniques. The dashed black line depicts the minimum beat-tone linewidth resolvable with the measurement technique (330 kHz). The inset shows the Lorentzian lineshape of the beat tone for the passively mode-locked laser at a spectral separation of 1.1 THz.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δωm=4π2M2Δωtm2,

Metrics