Abstract

We demonstrate partial conversion of circularly polarized light into orbital angular momentum-carrying vortex light with opposite-handed circular polarization. This conversion is accomplished in a novel manner using the birefringent properties of a circular subwavelength slit in a thin metal film. Our technique can be applied over a very wide range of frequencies and even allows the creation of anisotropic vortices when using a slit without circular symmetry.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ciattoni, G. Cincotti, and C. Palma, J. Opt. Soc. Am. A 20, 163 (2003).
    [CrossRef]
  2. E. Brasselet, Ya. Izdebskaya, V. Shvedov, A. S. Desyatnikov, W. Krolikowski, and Yu. S. Kivshar, Opt. Lett. 34, 1021 (2009).
    [CrossRef]
  3. L. Marrucci, C. Manzo, and D. Paparo, Phys. Rev. Lett. 96, 163905 (2006).
    [CrossRef]
  4. E. Karimi, B. Piccirillo, L. Marrucci, and E. Santamato, Opt. Lett. 34, 1225 (2009).
    [CrossRef]
  5. E. Brasselet and C. Loussert, Opt. Lett. 36, 719 (2011).
  6. Z. Bomzon, V. Kleiner, and E. Hasman, Opt. Lett. 26, 1424 (2001).
    [CrossRef]
  7. Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, Nano Lett. 9, 3016 (2009).
    [CrossRef]
  8. E. Karimi, L. Marrucci, V. Grillo, and E. Santamato, Phys. Rev. Lett. 108, 044801 (2012).
    [CrossRef]
  9. P. F. Chimento, N. V. Kuzmin, J. Bosman, P. F. A. Alkemade, G. W. ’t Hooft, and E. R. Eliel, Opt. Express 19, 24219 (2011).
    [CrossRef]
  10. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
    [CrossRef]
  11. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, Phys. Rev. Lett. 88, 053601 (2002).
    [CrossRef]
  12. A. Roberts and L. Lin, Opt. Lett. 37, 1820 (2012).
  13. P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, Appl. Phys. Lett. 100, 013101 (2012).
  14. R. A. Beth, Phys. Rev. 50, 115 (1936).
    [CrossRef]
  15. M. V. Berry, M. R. Jeffrey, and M. Mansuripur, J. Opt. A 7, 685 (2005).
    [CrossRef]
  16. B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, Am. J. Phys. 75, 163 (2007).
    [CrossRef]
  17. E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).
  18. I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, Opt. Commun. 119, 604 (1995).
    [CrossRef]
  19. L. Cai, Q. Liu, and X. Yang, Opt. Laser Technol. 35, 295 (2003).
    [CrossRef]

2012

E. Karimi, L. Marrucci, V. Grillo, and E. Santamato, Phys. Rev. Lett. 108, 044801 (2012).
[CrossRef]

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, Appl. Phys. Lett. 100, 013101 (2012).

A. Roberts and L. Lin, Opt. Lett. 37, 1820 (2012).

2011

2009

2007

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, Am. J. Phys. 75, 163 (2007).
[CrossRef]

2006

L. Marrucci, C. Manzo, and D. Paparo, Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef]

2005

M. V. Berry, M. R. Jeffrey, and M. Mansuripur, J. Opt. A 7, 685 (2005).
[CrossRef]

2003

L. Cai, Q. Liu, and X. Yang, Opt. Laser Technol. 35, 295 (2003).
[CrossRef]

A. Ciattoni, G. Cincotti, and C. Palma, J. Opt. Soc. Am. A 20, 163 (2003).
[CrossRef]

2002

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, Phys. Rev. Lett. 88, 053601 (2002).
[CrossRef]

2001

1995

I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, Opt. Commun. 119, 604 (1995).
[CrossRef]

1992

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef]

1964

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

1936

R. A. Beth, Phys. Rev. 50, 115 (1936).
[CrossRef]

’t Hooft, G. W.

Aieta, F.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, Appl. Phys. Lett. 100, 013101 (2012).

Alkemade, P. F. A.

Allen, L.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, Phys. Rev. Lett. 88, 053601 (2002).
[CrossRef]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef]

Barrett, D.

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, Am. J. Phys. 75, 163 (2007).
[CrossRef]

Basistiy, I. V.

I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, Opt. Commun. 119, 604 (1995).
[CrossRef]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef]

Berry, M. V.

M. V. Berry, M. R. Jeffrey, and M. Mansuripur, J. Opt. A 7, 685 (2005).
[CrossRef]

Beth, R. A.

R. A. Beth, Phys. Rev. 50, 115 (1936).
[CrossRef]

Blanchard, R.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, Appl. Phys. Lett. 100, 013101 (2012).

Bomzon, Z.

Bosman, J.

Brasselet, E.

Bretner, I.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, Nano Lett. 9, 3016 (2009).
[CrossRef]

Cai, L.

L. Cai, Q. Liu, and X. Yang, Opt. Laser Technol. 35, 295 (2003).
[CrossRef]

Capasso, F.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, Appl. Phys. Lett. 100, 013101 (2012).

Chimento, P. F.

Ciattoni, A.

Cincotti, G.

Collett, E.

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, Am. J. Phys. 75, 163 (2007).
[CrossRef]

Desyatnikov, A. S.

Eliel, E. R.

Fraher, B.

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, Am. J. Phys. 75, 163 (2007).
[CrossRef]

Gaburro, Z.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, Appl. Phys. Lett. 100, 013101 (2012).

Genevet, P.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, Appl. Phys. Lett. 100, 013101 (2012).

Gorodetski, Y.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, Nano Lett. 9, 3016 (2009).
[CrossRef]

Grillo, V.

E. Karimi, L. Marrucci, V. Grillo, and E. Santamato, Phys. Rev. Lett. 108, 044801 (2012).
[CrossRef]

Hasman, E.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, Nano Lett. 9, 3016 (2009).
[CrossRef]

Z. Bomzon, V. Kleiner, and E. Hasman, Opt. Lett. 26, 1424 (2001).
[CrossRef]

Izdebskaya, Ya.

Jeffrey, M. R.

M. V. Berry, M. R. Jeffrey, and M. Mansuripur, J. Opt. A 7, 685 (2005).
[CrossRef]

Karimi, E.

E. Karimi, L. Marrucci, V. Grillo, and E. Santamato, Phys. Rev. Lett. 108, 044801 (2012).
[CrossRef]

E. Karimi, B. Piccirillo, L. Marrucci, and E. Santamato, Opt. Lett. 34, 1225 (2009).
[CrossRef]

Kats, M. A.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, Appl. Phys. Lett. 100, 013101 (2012).

Kivshar, Yu. S.

Kleiner, V.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, Nano Lett. 9, 3016 (2009).
[CrossRef]

Z. Bomzon, V. Kleiner, and E. Hasman, Opt. Lett. 26, 1424 (2001).
[CrossRef]

Krolikowski, W.

Kuzmin, N. V.

Lin, J.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, Appl. Phys. Lett. 100, 013101 (2012).

Lin, L.

Liu, Q.

L. Cai, Q. Liu, and X. Yang, Opt. Laser Technol. 35, 295 (2003).
[CrossRef]

Loussert, C.

MacVicar, I.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, Phys. Rev. Lett. 88, 053601 (2002).
[CrossRef]

Mansuripur, M.

M. V. Berry, M. R. Jeffrey, and M. Mansuripur, J. Opt. A 7, 685 (2005).
[CrossRef]

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef]

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

Marrucci, L.

E. Karimi, L. Marrucci, V. Grillo, and E. Santamato, Phys. Rev. Lett. 108, 044801 (2012).
[CrossRef]

E. Karimi, B. Piccirillo, L. Marrucci, and E. Santamato, Opt. Lett. 34, 1225 (2009).
[CrossRef]

L. Marrucci, C. Manzo, and D. Paparo, Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef]

O’Neil, A. T.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, Phys. Rev. Lett. 88, 053601 (2002).
[CrossRef]

Padgett, M. J.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, Phys. Rev. Lett. 88, 053601 (2002).
[CrossRef]

Palma, C.

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef]

Piccirillo, B.

Roberts, A.

Santamato, E.

E. Karimi, L. Marrucci, V. Grillo, and E. Santamato, Phys. Rev. Lett. 108, 044801 (2012).
[CrossRef]

E. Karimi, B. Piccirillo, L. Marrucci, and E. Santamato, Opt. Lett. 34, 1225 (2009).
[CrossRef]

Schaefer, B.

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, Am. J. Phys. 75, 163 (2007).
[CrossRef]

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

Scully, M. O.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, Appl. Phys. Lett. 100, 013101 (2012).

Shitrit, N.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, Nano Lett. 9, 3016 (2009).
[CrossRef]

Shvedov, V.

Smyth, R.

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, Am. J. Phys. 75, 163 (2007).
[CrossRef]

Soskin, M. S.

I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, Opt. Commun. 119, 604 (1995).
[CrossRef]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef]

Vasnetsov, M. V.

I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, Opt. Commun. 119, 604 (1995).
[CrossRef]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef]

Yang, X.

L. Cai, Q. Liu, and X. Yang, Opt. Laser Technol. 35, 295 (2003).
[CrossRef]

Yu, N.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, Appl. Phys. Lett. 100, 013101 (2012).

Am. J. Phys.

B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, Am. J. Phys. 75, 163 (2007).
[CrossRef]

Appl. Phys. Lett.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, Appl. Phys. Lett. 100, 013101 (2012).

Bell Syst. Tech. J.

E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

J. Opt. A

M. V. Berry, M. R. Jeffrey, and M. Mansuripur, J. Opt. A 7, 685 (2005).
[CrossRef]

J. Opt. Soc. Am. A

Nano Lett.

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, Nano Lett. 9, 3016 (2009).
[CrossRef]

Opt. Commun.

I. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, Opt. Commun. 119, 604 (1995).
[CrossRef]

Opt. Express

Opt. Laser Technol.

L. Cai, Q. Liu, and X. Yang, Opt. Laser Technol. 35, 295 (2003).
[CrossRef]

Opt. Lett.

Phys. Rev.

R. A. Beth, Phys. Rev. 50, 115 (1936).
[CrossRef]

Phys. Rev. A

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef]

Phys. Rev. Lett.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, Phys. Rev. Lett. 88, 053601 (2002).
[CrossRef]

E. Karimi, L. Marrucci, V. Grillo, and E. Santamato, Phys. Rev. Lett. 108, 044801 (2012).
[CrossRef]

L. Marrucci, C. Manzo, and D. Paparo, Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Sketches of the experimental setups. QWP, quarter-wave plate; FTL, Fourier-transforming (2f) lens; and LP, linear polarizer. (a) Setup used to image the ring slit. The quarter-wave plate and linear polarizer on the right-hand side of the figure measure the local polarization state of the light. (b) Setup used to measure the polarization and phase of the far field of the slit. The objective’s focus is now not on the camera but in the focus of the FTL. In this case, the quarter-wave plate and polarizer are simply used to view the σ^+ and σ^ components separately. An interferometer measures the phase of each polarization component. When not measuring the phase, we simply block the reference beam. (c) Sketch of the structure milled into the sample.

Fig. 2.
Fig. 2.

(a) Diagram showing the expected local polarization state of light transmitted through the ring slit. The transmitted intensity is constant over the slit. (b) Measured transmitted intensity. (c) Local polarization ellipses of the transmitted light. Light grey ellipses indicate right-handed elliptical polarization, dark grey ones indicate left-handed elliptical polarization, and black lines indicate polarization states with ellipticity less than 10%. (d) Measured normalized Stokes parameters of the light transmitted through the ring slit as a function of azimuthal angle. This shows the same information as (c), but here it is easier to compare it to the expected results (solid curves), with which we observe quite good agreement. An angle of 0° corresponds to 3 o’clock in (c) (see arrows), and increases counterclockwise.

Fig. 3.
Fig. 3.

Far-field diffraction pattern of the circular slit, split into σ^+ (top) and σ^ (bottom) polarized components. (a), (d) Calculated intensity and phase in the far field; the luminance indicates the intensity, and the hue indicates the phase, cycling from 0 to 2π. The σ^ component has a topological charge of 2. (b), (e) Measured intensity of both components, showing good agreement with the calculations. (c), (f) Interferograms using reference beams with the appropriate circular polarization, demonstrating the phase of both components. In (f), one fringe splits into three, indicating a helical wavefront with a topological charge of 2, as in the calculations. The interference fringe minima are marked with lines for clarity, using the technique described in [19].

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E0FF1+i2πR0ΔR[J0(R0k)σ^+iexp(2iθ)J2(R0k)σ^],
η=I/Itotal=sin2(Δϕ/2),

Metrics