Abstract

We present dynamic full-field optical coherence microscope imaging using a scientific complementary metal oxide semiconductor camera in conjunction with a demodulation scheme based on the Riesz transform and monogenic signals. The potential of our approach is verified by a comparison with conventional phase-stepping as well as with an analytic reconstruction method and finally exemplified for dynamic mechanical testing of a polymer/fiber composite structure.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Wojtkowski, Appl. Opt. 49, D30 (2010).
    [CrossRef]
  2. D. Stifter, E. Leiss-Holzinger, Z. Major, B. Baumann, M. Pircher, E. Götzinger, C. K. Hitzenberger, and B. Heise, Opt. Express 18, 25712 (2010).
    [CrossRef]
  3. A. Dubois, L. Vabre, A.-C. Boccara, and E. Beaurepaire, Appl. Opt. 41, 805 (2002).
    [CrossRef]
  4. Y. Watanabe and M. Sato, Opt. Commun. 281, 1889 (2008).
    [CrossRef]
  5. K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, J.-F. Le Gargasson, and C. Boccara, Opt. Express 13, 6286 (2005).
    [CrossRef]
  6. M. S. Hrebesh, Adv. Opt. Technol.2012, 26 (2012).
    [CrossRef]
  7. K. Wiesauer, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. Oster, and D. Stifter, Compos. Sci. Technol. 67, 3051 (2007).
    [CrossRef]
  8. S. E. Schausberger, B. Heise, C. Maurer, S. Bernet, M. Ritsch-Marte, and D. Stifter, Opt. Lett. 35, 4154 (2010).
    [CrossRef]
  9. S. L. Hahn, Proc. IEEE 80, 1287 (1992).
    [CrossRef]
  10. M. Felsberg and G. Sommer, IEEE Trans. Acoust. Speech Signal Process. 49, 3136 (2001).
    [CrossRef]
  11. K. G. Larkin, D. J. Bone, and M. A. Oldfield, J. Opt. Soc. Am. A 18, 1862 (2001).
    [CrossRef]
  12. M. Wielgus and K. Patorski, Appl. Opt. 50, 5513 (2011).
    [CrossRef]
  13. B. Jähne, Digital Image Processing (Springer, 2002).
  14. M. Unser, D. Sage, and D. Van De Ville, IEEE Trans. Image Process. 18, 2402 (2009).
    [CrossRef]

2011 (1)

2010 (3)

2009 (1)

M. Unser, D. Sage, and D. Van De Ville, IEEE Trans. Image Process. 18, 2402 (2009).
[CrossRef]

2008 (1)

Y. Watanabe and M. Sato, Opt. Commun. 281, 1889 (2008).
[CrossRef]

2007 (1)

K. Wiesauer, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. Oster, and D. Stifter, Compos. Sci. Technol. 67, 3051 (2007).
[CrossRef]

2005 (1)

2002 (1)

2001 (2)

M. Felsberg and G. Sommer, IEEE Trans. Acoust. Speech Signal Process. 49, 3136 (2001).
[CrossRef]

K. G. Larkin, D. J. Bone, and M. A. Oldfield, J. Opt. Soc. Am. A 18, 1862 (2001).
[CrossRef]

1992 (1)

S. L. Hahn, Proc. IEEE 80, 1287 (1992).
[CrossRef]

Baumann, B.

Beaurepaire, E.

Bernet, S.

Boccara, A.-C.

Boccara, C.

Bone, D. J.

Dubois, A.

Felsberg, M.

M. Felsberg and G. Sommer, IEEE Trans. Acoust. Speech Signal Process. 49, 3136 (2001).
[CrossRef]

Götzinger, E.

D. Stifter, E. Leiss-Holzinger, Z. Major, B. Baumann, M. Pircher, E. Götzinger, C. K. Hitzenberger, and B. Heise, Opt. Express 18, 25712 (2010).
[CrossRef]

K. Wiesauer, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. Oster, and D. Stifter, Compos. Sci. Technol. 67, 3051 (2007).
[CrossRef]

Grieve, K.

Hahn, S. L.

S. L. Hahn, Proc. IEEE 80, 1287 (1992).
[CrossRef]

Heise, B.

Hitzenberger, C. K.

D. Stifter, E. Leiss-Holzinger, Z. Major, B. Baumann, M. Pircher, E. Götzinger, C. K. Hitzenberger, and B. Heise, Opt. Express 18, 25712 (2010).
[CrossRef]

K. Wiesauer, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. Oster, and D. Stifter, Compos. Sci. Technol. 67, 3051 (2007).
[CrossRef]

Hrebesh, M. S.

M. S. Hrebesh, Adv. Opt. Technol.2012, 26 (2012).
[CrossRef]

Jähne, B.

B. Jähne, Digital Image Processing (Springer, 2002).

Larkin, K. G.

Le Gargasson, J.-F.

Leiss-Holzinger, E.

Major, Z.

Maurer, C.

Oldfield, M. A.

Oster, R.

K. Wiesauer, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. Oster, and D. Stifter, Compos. Sci. Technol. 67, 3051 (2007).
[CrossRef]

Paques, M.

Patorski, K.

Pircher, M.

D. Stifter, E. Leiss-Holzinger, Z. Major, B. Baumann, M. Pircher, E. Götzinger, C. K. Hitzenberger, and B. Heise, Opt. Express 18, 25712 (2010).
[CrossRef]

K. Wiesauer, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. Oster, and D. Stifter, Compos. Sci. Technol. 67, 3051 (2007).
[CrossRef]

Ritsch-Marte, M.

Sage, D.

M. Unser, D. Sage, and D. Van De Ville, IEEE Trans. Image Process. 18, 2402 (2009).
[CrossRef]

Sahel, J.

Sato, M.

Y. Watanabe and M. Sato, Opt. Commun. 281, 1889 (2008).
[CrossRef]

Schausberger, S. E.

Simonutti, M.

Sommer, G.

M. Felsberg and G. Sommer, IEEE Trans. Acoust. Speech Signal Process. 49, 3136 (2001).
[CrossRef]

Stifter, D.

Unser, M.

M. Unser, D. Sage, and D. Van De Ville, IEEE Trans. Image Process. 18, 2402 (2009).
[CrossRef]

Vabre, L.

Van De Ville, D.

M. Unser, D. Sage, and D. Van De Ville, IEEE Trans. Image Process. 18, 2402 (2009).
[CrossRef]

Watanabe, Y.

Y. Watanabe and M. Sato, Opt. Commun. 281, 1889 (2008).
[CrossRef]

Wielgus, M.

Wiesauer, K.

K. Wiesauer, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. Oster, and D. Stifter, Compos. Sci. Technol. 67, 3051 (2007).
[CrossRef]

Wojtkowski, M.

Appl. Opt. (3)

Compos. Sci. Technol. (1)

K. Wiesauer, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. Oster, and D. Stifter, Compos. Sci. Technol. 67, 3051 (2007).
[CrossRef]

IEEE Trans. Acoust. Speech Signal Process. (1)

M. Felsberg and G. Sommer, IEEE Trans. Acoust. Speech Signal Process. 49, 3136 (2001).
[CrossRef]

IEEE Trans. Image Process. (1)

M. Unser, D. Sage, and D. Van De Ville, IEEE Trans. Image Process. 18, 2402 (2009).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

Y. Watanabe and M. Sato, Opt. Commun. 281, 1889 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Proc. IEEE (1)

S. L. Hahn, Proc. IEEE 80, 1287 (1992).
[CrossRef]

Other (2)

M. S. Hrebesh, Adv. Opt. Technol.2012, 26 (2012).
[CrossRef]

B. Jähne, Digital Image Processing (Springer, 2002).

Supplementary Material (2)

» Media 1: AVI (13119 KB)     
» Media 2: AVI (14143 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Demodulation performance of the analytic and monogenic approach on simulated FF-OCM raw data: (a) ground truth of the amplitude map;(b), (e) simulated 2D AM-FM input data; (c), (d) reconstructed 2D analytic and monogenic amplitude map in case of linear fringes (b); and (f), (g) corresponding results for closed fringe structures (e).

Fig. 2.
Fig. 2.

FF-OCM of a fiber-reinforced polymer structure. Reflectivity image obtained with (a) conventional phase stepping (8 frames); (b) 2D analytic reconstruction; (c) monogenic approach; (d), (e) calculated monogenic phase and orientation map of the fringe pattern (color encoded, online), field of view 3mm×3mm; (f1) magnified part of the raw fringe pattern, (f2), (f3), and (f4) magnified reconstruction details corresponding to (a), (b), and (c), as indicated in (a).

Fig. 3.
Fig. 3.

Imaging of a living microorganism (Paramecium). (a), (b) Interferometric raw data taken at different times. Arrows mark the specimen and dashed circles indicate objects situated outside the coherent gate. (c), (d) Corresponding demodulated FF-OCM images with moving specimen and suppressed object structures. The dashed square in (c) marks the region of interest reconstructed in (e) with the 2D analytic and in (f) with the monogenic method. (Media 1, online)

Fig. 4.
Fig. 4.

(a) 3D stack of fiber-filled polymer sample before testing (540×300×200μm). (b)–(g) Extracted image sequence from movie taken during tensile test with fracture front marked by dashed line and arrows indicating the position of an individual detaching fibre. In the movie (Media 2, online) the full tensile test is shown in real-time.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

AH(x,y)=f(x,y)2+fH1(x,y)2+fH2(x,y)2+fHT(x,y)2,
fM(x,y)=[f(x,y),fR1(x,y),fR2(x,y)]
fR1=x2πr3f(x,y)=12πr2cosθf(x,y),
fR2=y2πr3f(x,y)=12πr2sinθf(x,y),
AR(x,y)=f(x,y)2+fR1(x,y)2+fR2(x,y)2,
ϕR(x,y)=atan(fR1(x,y)2+fR2(x,y)2f(x,y)).
βR(x,y)=atan(fR2(x,y)fR1(x,y)).

Metrics