Abstract

The volume plasmon is traditionally defined as a one-dimensional collective oscillation of the free-charge carriers in a metallic volume. Here, we use an alternative approach with the geometry of a lossy Fabry–Perot cavity in a metallic slab. The field equations now show singularities at the plasma resonance, but these can be worked away. We find that the volume plasmon is not purely longitudinal, as in the classical picture; that it does not show evanescence, that its magnetic field is zero, and that at resonance the Fabry–Perot reflectance of the resonant slab equals one. These attributes differentiate the volume plasmon more fundamentally from the surface plasmon than was thought up to now.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University, 1999), p. 65.
  2. N. Van Kampen and B. Felderhof, Theoretical Methods in Plasma Physics (North-Holland, 1967), p. 117.
  3. W. N. Hansen, J. Opt. Soc. Am. 58, 380 (1968).
    [CrossRef]

1968

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University, 1999), p. 65.

Felderhof, B.

N. Van Kampen and B. Felderhof, Theoretical Methods in Plasma Physics (North-Holland, 1967), p. 117.

Hansen, W. N.

Van Kampen, N.

N. Van Kampen and B. Felderhof, Theoretical Methods in Plasma Physics (North-Holland, 1967), p. 117.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University, 1999), p. 65.

J. Opt. Soc. Am.

Other

M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University, 1999), p. 65.

N. Van Kampen and B. Felderhof, Theoretical Methods in Plasma Physics (North-Holland, 1967), p. 117.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (27)

Equations on this page are rendered with MathJax. Learn more.

ε2=ε2r(1ωp2ω2).
k2=n2ωc
2E2+n22ω2c2E2=0,
E2x=E0exp(ik2xx)·[cosϑ1(1r)cosk2zz+in1cosϑ2n2(1+r)sink2zz],
E2z=E0n2sinϑ2exp(ik2xx)·[n1n22(1+r)cosk2zz+icosϑ1n2cosϑ2(1r)sink2zz],
n1sinϑ1=n2sinϑ2.
E(x,z)=E0exp(ik·r)=E0exp(ikxx)exp(kxz).
kz=ikx,
2E2(x,z)=0,
E2x=E0exp(ik2xx)[aexp(k2zz)+bexp(k2zz)],
E2z=E0exp(ik2xx)[cexp(k2zz)+dexp(k2zz)].
exp(k2zz)=cosh(k2zz)+sinh(k2zz),exp(k2zz)=cosh(k2zz)sinh(k2zz),
tanϑ2=i.
tanϑ2sinϑ21sin2ϑ2=n2sinϑ2n22n22sin2ϑ2=n1sinϑ1n22n12sin2ϑ1.
r=r12+r23exp(2iβ2)1+r12r23exp(2iβ2),
r12=ε2n1cosϑ1ε1n2cosϑ2ε2n1cosϑ1+ε1n2cosϑ2,
limωωp[cosϑ2sinϑ2(1+r)]=(+i·)(i·)·0
k2z=ik2x.
sin(ia)=isinhaandcos(ia)=cosha
E2x=E0exp(ikxx)[2cosϑ1cosh(kxz)sinϑ2cosϑ2sinϑ1(1+r)sinh(kxz)],
E2z=i·E0exp(ikxx)[sinϑ2cosϑ2sinϑ1(1+r)cosh(kxz)2cosϑ1sinh(kxz)].
iωB2y=E2zxE2xz,
B2y=0.
limωωp[cosϑ2sinϑ2(1+r)]=2sinϑ1cosϑ1tanh(kxd),
E2x=2E0exp(ikxx)cosϑ1[cosh(kxz)1tanh(kxd)sinh(kxz)],E2z=2i·E0exp(ikxx)cosϑ1[1tanh(kxd)cosh(kxz)sinh(kxz)],B2y=0.
E2z(z=0)=E2z(z=d)=2icosϑ1/sinh(k2xd).
{k2x=mE2xk2z=ik2x=imE2xmE2z.

Metrics