Abstract

Shack–Hartmann wavefront sensors (SH-WFS) have little sensitivity in depth and hence are unsuitable for microscopy and are limited for retinal imaging. We demonstrate the first direct Shack–Hartmann measurement of wavefront originating from a multiple-layer target, in the presence of significant stray reflections that render a standard SH-WFS inoperable. A coherence-gate SH-WFS is implemented by adding time-domain low-coherence reflectometry gating to an SH-WFS configuration. The depth resolution is determined by the operational depth selection of the coherence gate, much narrower than the depth range of the SH-WFS. Five distinctive wavefronts are measured from five layers of a multiple-layer target. This paves the way toward depth-resolved wavefront sensing, which can significantly improve adaptive optics closed loops applied to microscopy and imaging of the retina.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Tyson and M. Dekker, Adaptive Optics Engineering Handbook (Marcel Dekker, 1999).
  2. A. Roorda, F. Romero-Borja, I. I. I. W. Donnelly, H. Queener, T. Hebert, and M. Campbell, Opt. Express 10, 405 (2002).
    [CrossRef]
  3. M. J. Booth, Phil. Trans. R. Soc. A 365, 2829 (2007).
    [CrossRef]
  4. M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, Proc. Natl. Acad. Sci. USA, 99, 5788 (2002).
    [CrossRef]
  5. M. Nieto-Vesperinas, R. Navarro, and F. J. Fuentes, J. Opt. Soc. Am. A 5, 30 (1988).
    [CrossRef]
  6. Y. Yasuno, T. F. Wiesendanger, A. K. Ruprecht, S. Makita, T. Yatagai, and H. J. Tiziani, Opt. Commun. 232, 91 (2004).
    [CrossRef]
  7. J. R. Fienup and J. J. Miller, J. Opt. Soc. Am. A 20, 609 (2003).
    [CrossRef]
  8. P. Marsh, D. Burns, and J. Girkin, Opt. Express 11, 1123 (2003).
    [CrossRef]
  9. M. Feierabend, M. Rückel, and W. Denk, Opt. Lett. 29, 2255 (2004).
    [CrossRef]
  10. M. Rueckel, J. A. Mack-Bucher, and W. Denk, Proc. Natl. Acad. Sci. USA 103, 17137 (2006).
    [CrossRef]
  11. S. Tuohy and A. G. Podoleanu, Opt. Express 18, 3458 (2010).
    [CrossRef]
  12. A. Dubois, G. Moneron, and C. Boccara, Opt. Commun. 266, 738 (2006).
    [CrossRef]
  13. L. Vabre, A. Dubois, and A. C. Boccara, Opt. Lett. 27, 530 (2002).
    [CrossRef]
  14. N. A. Roddier, Opt. Eng. 29, 1174 (1990).
    [CrossRef]

2010

2007

M. J. Booth, Phil. Trans. R. Soc. A 365, 2829 (2007).
[CrossRef]

2006

M. Rueckel, J. A. Mack-Bucher, and W. Denk, Proc. Natl. Acad. Sci. USA 103, 17137 (2006).
[CrossRef]

A. Dubois, G. Moneron, and C. Boccara, Opt. Commun. 266, 738 (2006).
[CrossRef]

2004

Y. Yasuno, T. F. Wiesendanger, A. K. Ruprecht, S. Makita, T. Yatagai, and H. J. Tiziani, Opt. Commun. 232, 91 (2004).
[CrossRef]

M. Feierabend, M. Rückel, and W. Denk, Opt. Lett. 29, 2255 (2004).
[CrossRef]

2003

2002

1990

N. A. Roddier, Opt. Eng. 29, 1174 (1990).
[CrossRef]

1988

Boccara, A. C.

Boccara, C.

A. Dubois, G. Moneron, and C. Boccara, Opt. Commun. 266, 738 (2006).
[CrossRef]

Booth, M. J.

M. J. Booth, Phil. Trans. R. Soc. A 365, 2829 (2007).
[CrossRef]

M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, Proc. Natl. Acad. Sci. USA, 99, 5788 (2002).
[CrossRef]

Burns, D.

Campbell, M.

Dekker, M.

R. K. Tyson and M. Dekker, Adaptive Optics Engineering Handbook (Marcel Dekker, 1999).

Denk, W.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, Proc. Natl. Acad. Sci. USA 103, 17137 (2006).
[CrossRef]

M. Feierabend, M. Rückel, and W. Denk, Opt. Lett. 29, 2255 (2004).
[CrossRef]

Donnelly, I. I. I. W.

Dubois, A.

A. Dubois, G. Moneron, and C. Boccara, Opt. Commun. 266, 738 (2006).
[CrossRef]

L. Vabre, A. Dubois, and A. C. Boccara, Opt. Lett. 27, 530 (2002).
[CrossRef]

Feierabend, M.

Fienup, J. R.

Fuentes, F. J.

Girkin, J.

Hebert, T.

Juskaitis, R.

M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, Proc. Natl. Acad. Sci. USA, 99, 5788 (2002).
[CrossRef]

Mack-Bucher, J. A.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, Proc. Natl. Acad. Sci. USA 103, 17137 (2006).
[CrossRef]

Makita, S.

Y. Yasuno, T. F. Wiesendanger, A. K. Ruprecht, S. Makita, T. Yatagai, and H. J. Tiziani, Opt. Commun. 232, 91 (2004).
[CrossRef]

Marsh, P.

Miller, J. J.

Moneron, G.

A. Dubois, G. Moneron, and C. Boccara, Opt. Commun. 266, 738 (2006).
[CrossRef]

Navarro, R.

Neil, M. A. A.

M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, Proc. Natl. Acad. Sci. USA, 99, 5788 (2002).
[CrossRef]

Nieto-Vesperinas, M.

Podoleanu, A. G.

Queener, H.

Roddier, N. A.

N. A. Roddier, Opt. Eng. 29, 1174 (1990).
[CrossRef]

Romero-Borja, F.

Roorda, A.

Rückel, M.

Rueckel, M.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, Proc. Natl. Acad. Sci. USA 103, 17137 (2006).
[CrossRef]

Ruprecht, A. K.

Y. Yasuno, T. F. Wiesendanger, A. K. Ruprecht, S. Makita, T. Yatagai, and H. J. Tiziani, Opt. Commun. 232, 91 (2004).
[CrossRef]

Tiziani, H. J.

Y. Yasuno, T. F. Wiesendanger, A. K. Ruprecht, S. Makita, T. Yatagai, and H. J. Tiziani, Opt. Commun. 232, 91 (2004).
[CrossRef]

Tuohy, S.

Tyson, R. K.

R. K. Tyson and M. Dekker, Adaptive Optics Engineering Handbook (Marcel Dekker, 1999).

Vabre, L.

Wiesendanger, T. F.

Y. Yasuno, T. F. Wiesendanger, A. K. Ruprecht, S. Makita, T. Yatagai, and H. J. Tiziani, Opt. Commun. 232, 91 (2004).
[CrossRef]

Wilson, T.

M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, Proc. Natl. Acad. Sci. USA, 99, 5788 (2002).
[CrossRef]

Yasuno, Y.

Y. Yasuno, T. F. Wiesendanger, A. K. Ruprecht, S. Makita, T. Yatagai, and H. J. Tiziani, Opt. Commun. 232, 91 (2004).
[CrossRef]

Yatagai, T.

Y. Yasuno, T. F. Wiesendanger, A. K. Ruprecht, S. Makita, T. Yatagai, and H. J. Tiziani, Opt. Commun. 232, 91 (2004).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Commun.

A. Dubois, G. Moneron, and C. Boccara, Opt. Commun. 266, 738 (2006).
[CrossRef]

Y. Yasuno, T. F. Wiesendanger, A. K. Ruprecht, S. Makita, T. Yatagai, and H. J. Tiziani, Opt. Commun. 232, 91 (2004).
[CrossRef]

Opt. Eng.

N. A. Roddier, Opt. Eng. 29, 1174 (1990).
[CrossRef]

Opt. Express

Opt. Lett.

Phil. Trans. R. Soc. A

M. J. Booth, Phil. Trans. R. Soc. A 365, 2829 (2007).
[CrossRef]

Proc. Natl. Acad. Sci. USA

M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, Proc. Natl. Acad. Sci. USA, 99, 5788 (2002).
[CrossRef]

M. Rueckel, J. A. Mack-Bucher, and W. Denk, Proc. Natl. Acad. Sci. USA 103, 17137 (2006).
[CrossRef]

Other

R. K. Tyson and M. Dekker, Adaptive Optics Engineering Handbook (Marcel Dekker, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

CG/SH-WFS setup. SLD, superluminiscent diode; CL, collimating lens; BS1, BS2, BS3, BS4, four plate beamsplitters; RM, reference mirror; Obj, object, made of two nonparallel microscope slides of 1.4 mm thickness mounted in front of a mirror, OM, as shown in the inset; PZT, Piezo-actuator; RTS and OTS, reference and object translation stage, respectively (moving axially); L1, L2, L3, L4, achromatic doublets; LA, lenslet array; P1, P2, P3, P4, and P5 in the inset, the five planes in the Obj where wavefronts originate from.

Fig. 2.
Fig. 2.

Zoom images collected from the SH spots obtained with the SH-WFS in (a)–(e) and with the CG/SH-WFS in (f)–(j). In each column, the Obj was moved until P1, P2, P3, P4, and P5 planes matched each of the OPD=0 conditions, respectively.

Fig. 3.
Fig. 3.

Reconstructed wavefronts from all five layers of the object, (a), (b), (c), (d), and (e), are the wavefronts measured from P1, P2, P3, P4, and P5, respectively; (f) displays the first 13 Zernike coefficients for all measurements.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I(x,y)=(I2I0)2+(I3I1)2.

Metrics