Abstract

Wideband suppression of zero order and relevant strongly asymmetric transmission can be obtained in photonic crystal gratings that are made of linear isotropic materials and show the broken structural (axial) symmetry, even if zero diffraction order may be coupled to a Floquet–Bloch (FB) wave at the incidence and exit interfaces. The studied mechanism requires that the peculiar diffractions at the corrugated exit interface inspire strong energy transfer to higher orders, including those not coupled to an FB wave. At the opposite direction of incidence, transmission due to zero and some higher orders that may be coupled at the corrugated input interface can vanish. This leads to the alternative scenario of wideband unidirectional transmission, which itself does not need but can coexist with the other scenario based on the merging of asymmetric diffraction and dispersion of the FB mode.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Wang, J. D. Chong, J. D. Joannopoulos, and M. Soljacic, Phys. Rev. Lett. 100, 013905 (2008).
    [CrossRef]
  2. A. Figotin and I. Vitebskiy, Phys. Rev. B 67, 165210 (2003).
    [CrossRef]
  3. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, J. Appl. Phys. 76, 2023 (1994).
    [CrossRef]
  4. M. Soljacic, C. Luo, J. D. Joannopoulos, and S. Fan, Opt. Lett. 28, 637 (2003).
    [CrossRef]
  5. M. J. Lockyear, A. P. Hibbins, K. R. White, and J. R. Sambles, Phys. Rev. E 74, 056611 (2006).
    [CrossRef]
  6. A. E. Serebryannikov, Phys. Rev. B 80, 155117 (2009).
    [CrossRef]
  7. A. O. Cakmak, E. Colak, A. E. Serebryannikov, and E. Ozbay, Opt. Express 18, 22283 (2010).
    [CrossRef]
  8. M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, Phys. Rev. Lett. 108, 213905 (2012).
    [CrossRef]
  9. C. Lu, X. Hu, and Q. Gong, Opt. Lett. 36, 4668 (2011).
    [CrossRef]
  10. A. E. Serebryannikov, A. O. Cakmak, and E. Ozbay, Opt. Express 20, 14980 (2012).
    [CrossRef]
  11. A. E. Serebryannikov, T. Magath, and K. Schuenemann, Phys. Rev. E 74, 066607 (2006).
    [CrossRef]
  12. X. F. Li, X. Ni, L. Feng, M. H. Lu, C. He, and Y. F. Chen, Phys. Rev. Lett. 106, 084301 (2011).
    [CrossRef]
  13. T. Magath and A. E. Serebryannikov, J. Opt. Soc. Am. A 22, 2405 (2005).
    [CrossRef]
  14. A. E. Serebryannikov, A. Y. Petrov, and E. Ozbay, Appl. Phys. Lett. 94, 181101 (2009).
    [CrossRef]

2012 (2)

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, Phys. Rev. Lett. 108, 213905 (2012).
[CrossRef]

A. E. Serebryannikov, A. O. Cakmak, and E. Ozbay, Opt. Express 20, 14980 (2012).
[CrossRef]

2011 (2)

C. Lu, X. Hu, and Q. Gong, Opt. Lett. 36, 4668 (2011).
[CrossRef]

X. F. Li, X. Ni, L. Feng, M. H. Lu, C. He, and Y. F. Chen, Phys. Rev. Lett. 106, 084301 (2011).
[CrossRef]

2010 (1)

2009 (2)

A. E. Serebryannikov, A. Y. Petrov, and E. Ozbay, Appl. Phys. Lett. 94, 181101 (2009).
[CrossRef]

A. E. Serebryannikov, Phys. Rev. B 80, 155117 (2009).
[CrossRef]

2008 (1)

Z. Wang, J. D. Chong, J. D. Joannopoulos, and M. Soljacic, Phys. Rev. Lett. 100, 013905 (2008).
[CrossRef]

2006 (2)

M. J. Lockyear, A. P. Hibbins, K. R. White, and J. R. Sambles, Phys. Rev. E 74, 056611 (2006).
[CrossRef]

A. E. Serebryannikov, T. Magath, and K. Schuenemann, Phys. Rev. E 74, 066607 (2006).
[CrossRef]

2005 (1)

2003 (2)

1994 (1)

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, J. Appl. Phys. 76, 2023 (1994).
[CrossRef]

Akosman, A. E.

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, Phys. Rev. Lett. 108, 213905 (2012).
[CrossRef]

Bloemer, M. J.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, J. Appl. Phys. 76, 2023 (1994).
[CrossRef]

Bowden, C. M.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, J. Appl. Phys. 76, 2023 (1994).
[CrossRef]

Cakmak, A. O.

Chen, Y. F.

X. F. Li, X. Ni, L. Feng, M. H. Lu, C. He, and Y. F. Chen, Phys. Rev. Lett. 106, 084301 (2011).
[CrossRef]

Chong, J. D.

Z. Wang, J. D. Chong, J. D. Joannopoulos, and M. Soljacic, Phys. Rev. Lett. 100, 013905 (2008).
[CrossRef]

Colak, E.

Dowling, J. P.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, J. Appl. Phys. 76, 2023 (1994).
[CrossRef]

Fan, S.

Feng, L.

X. F. Li, X. Ni, L. Feng, M. H. Lu, C. He, and Y. F. Chen, Phys. Rev. Lett. 106, 084301 (2011).
[CrossRef]

Figotin, A.

A. Figotin and I. Vitebskiy, Phys. Rev. B 67, 165210 (2003).
[CrossRef]

Gong, Q.

He, C.

X. F. Li, X. Ni, L. Feng, M. H. Lu, C. He, and Y. F. Chen, Phys. Rev. Lett. 106, 084301 (2011).
[CrossRef]

Hibbins, A. P.

M. J. Lockyear, A. P. Hibbins, K. R. White, and J. R. Sambles, Phys. Rev. E 74, 056611 (2006).
[CrossRef]

Hu, X.

Joannopoulos, J. D.

Z. Wang, J. D. Chong, J. D. Joannopoulos, and M. Soljacic, Phys. Rev. Lett. 100, 013905 (2008).
[CrossRef]

M. Soljacic, C. Luo, J. D. Joannopoulos, and S. Fan, Opt. Lett. 28, 637 (2003).
[CrossRef]

Li, X. F.

X. F. Li, X. Ni, L. Feng, M. H. Lu, C. He, and Y. F. Chen, Phys. Rev. Lett. 106, 084301 (2011).
[CrossRef]

Lockyear, M. J.

M. J. Lockyear, A. P. Hibbins, K. R. White, and J. R. Sambles, Phys. Rev. E 74, 056611 (2006).
[CrossRef]

Lu, C.

Lu, M. H.

X. F. Li, X. Ni, L. Feng, M. H. Lu, C. He, and Y. F. Chen, Phys. Rev. Lett. 106, 084301 (2011).
[CrossRef]

Luo, C.

Magath, T.

A. E. Serebryannikov, T. Magath, and K. Schuenemann, Phys. Rev. E 74, 066607 (2006).
[CrossRef]

T. Magath and A. E. Serebryannikov, J. Opt. Soc. Am. A 22, 2405 (2005).
[CrossRef]

Mutlu, M.

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, Phys. Rev. Lett. 108, 213905 (2012).
[CrossRef]

Ni, X.

X. F. Li, X. Ni, L. Feng, M. H. Lu, C. He, and Y. F. Chen, Phys. Rev. Lett. 106, 084301 (2011).
[CrossRef]

Ozbay, E.

A. E. Serebryannikov, A. O. Cakmak, and E. Ozbay, Opt. Express 20, 14980 (2012).
[CrossRef]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, Phys. Rev. Lett. 108, 213905 (2012).
[CrossRef]

A. O. Cakmak, E. Colak, A. E. Serebryannikov, and E. Ozbay, Opt. Express 18, 22283 (2010).
[CrossRef]

A. E. Serebryannikov, A. Y. Petrov, and E. Ozbay, Appl. Phys. Lett. 94, 181101 (2009).
[CrossRef]

Petrov, A. Y.

A. E. Serebryannikov, A. Y. Petrov, and E. Ozbay, Appl. Phys. Lett. 94, 181101 (2009).
[CrossRef]

Sambles, J. R.

M. J. Lockyear, A. P. Hibbins, K. R. White, and J. R. Sambles, Phys. Rev. E 74, 056611 (2006).
[CrossRef]

Scalora, M.

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, J. Appl. Phys. 76, 2023 (1994).
[CrossRef]

Schuenemann, K.

A. E. Serebryannikov, T. Magath, and K. Schuenemann, Phys. Rev. E 74, 066607 (2006).
[CrossRef]

Serebryannikov, A. E.

A. E. Serebryannikov, A. O. Cakmak, and E. Ozbay, Opt. Express 20, 14980 (2012).
[CrossRef]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, Phys. Rev. Lett. 108, 213905 (2012).
[CrossRef]

A. O. Cakmak, E. Colak, A. E. Serebryannikov, and E. Ozbay, Opt. Express 18, 22283 (2010).
[CrossRef]

A. E. Serebryannikov, A. Y. Petrov, and E. Ozbay, Appl. Phys. Lett. 94, 181101 (2009).
[CrossRef]

A. E. Serebryannikov, Phys. Rev. B 80, 155117 (2009).
[CrossRef]

A. E. Serebryannikov, T. Magath, and K. Schuenemann, Phys. Rev. E 74, 066607 (2006).
[CrossRef]

T. Magath and A. E. Serebryannikov, J. Opt. Soc. Am. A 22, 2405 (2005).
[CrossRef]

Soljacic, M.

Z. Wang, J. D. Chong, J. D. Joannopoulos, and M. Soljacic, Phys. Rev. Lett. 100, 013905 (2008).
[CrossRef]

M. Soljacic, C. Luo, J. D. Joannopoulos, and S. Fan, Opt. Lett. 28, 637 (2003).
[CrossRef]

Vitebskiy, I.

A. Figotin and I. Vitebskiy, Phys. Rev. B 67, 165210 (2003).
[CrossRef]

Wang, Z.

Z. Wang, J. D. Chong, J. D. Joannopoulos, and M. Soljacic, Phys. Rev. Lett. 100, 013905 (2008).
[CrossRef]

White, K. R.

M. J. Lockyear, A. P. Hibbins, K. R. White, and J. R. Sambles, Phys. Rev. E 74, 056611 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

A. E. Serebryannikov, A. Y. Petrov, and E. Ozbay, Appl. Phys. Lett. 94, 181101 (2009).
[CrossRef]

J. Appl. Phys. (1)

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, J. Appl. Phys. 76, 2023 (1994).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (2)

A. Figotin and I. Vitebskiy, Phys. Rev. B 67, 165210 (2003).
[CrossRef]

A. E. Serebryannikov, Phys. Rev. B 80, 155117 (2009).
[CrossRef]

Phys. Rev. E (2)

A. E. Serebryannikov, T. Magath, and K. Schuenemann, Phys. Rev. E 74, 066607 (2006).
[CrossRef]

M. J. Lockyear, A. P. Hibbins, K. R. White, and J. R. Sambles, Phys. Rev. E 74, 056611 (2006).
[CrossRef]

Phys. Rev. Lett. (3)

Z. Wang, J. D. Chong, J. D. Joannopoulos, and M. Soljacic, Phys. Rev. Lett. 100, 013905 (2008).
[CrossRef]

X. F. Li, X. Ni, L. Feng, M. H. Lu, C. He, and Y. F. Chen, Phys. Rev. Lett. 106, 084301 (2011).
[CrossRef]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, Phys. Rev. Lett. 108, 213905 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Geometry of PhC grating with one-side corrugations.

Fig. 2.
Fig. 2.

(a) Backward and (b) forward transmittance at d/a=0.53, εr=9.61, P=12, and θ=60°. Blue solid curve, t0=t0=t00; red dashed curve, (a) t1 and (b) t1; green dash-dotted curve, (a) t2 and (b) t20; cyan dotted curve, (a) T.

Fig. 3.
Fig. 3.

(a), (c) Backward and (b), (d) forward transmittance at (a), (b) d/a=0.4 and (c), (d) d/a=0.43, εr=5.8, P=12, and θ=60°. Blue solid curve, t0=t0=t0; red dashed curve, (a), (c) t1 and (b), (d) t1; green dash-dotted curve, (a), (c) t2 and (b), (d) t2; cyan dotted curve, (a), (c) T and (b), (d) T.

Fig. 4.
Fig. 4.

Maps of (a) backward-to-forward transmittance contrast, C1=T/T, and (b) higher to zero order transmittance contrast in the backward case, C2=(t1+t2)/t0, in dB, for the same PhC grating as in Figs. 3(a) and 3(b).

Metrics