Abstract

We propose a technique for measuring infrared femtosecond pulses: transient-grating self-referenced spectral interferometry. Based on this technique, we built an extremely simple, alignment-free device and successfully characterized both 38 fs pulses at 800 nm and sub-two-cycle 10 fs pulses at 1.75 μm.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, Appl. Phys. B 99, 7 (2010).
    [CrossRef]
  2. T. Oksenhendler, “Self-referenced spectral interferometry theory,” arXiv:1204.4949v1 (2012).
  3. A. Moulet, S. Grabielle, C. Cornaggia, N. Forget, and T. Oksenhendler, Opt. Lett. 35, 3856 (2010).
    [CrossRef]
  4. S. Grabielle, S. Coudreau, V. Crozatier, N. Forget, F. Lepetit, O. Gobert, and T. Oksenhendler, in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest(Optical Society of America, 2011), paper CF_P22.
  5. A. Trisorio, S. Grabielle, M. Divall, N. Forget, and C. P. Hauri, Opt. Lett. 37, 2892 (2012).
    [CrossRef]
  6. J. Liu, Y. L. Jiang, T. Kobayashi, R. X. Li, and Z. Z. Xu, J. Opt. Soc. Am. B 29, 29 (2012).
    [CrossRef]
  7. A. C. Eckbreth, Appl. Phys. Lett. 32, 421 (1978).
    [CrossRef]
  8. C. Li, D. Wang, L. W. Song, J. Liu, P. Liu, C. H. Xu, Y. X. Leng, R. X. Li, and Z. Z. Xu, Opt. Express 19, 6783 (2011).
    [CrossRef]

2012 (2)

2011 (1)

2010 (2)

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, Appl. Phys. B 99, 7 (2010).
[CrossRef]

A. Moulet, S. Grabielle, C. Cornaggia, N. Forget, and T. Oksenhendler, Opt. Lett. 35, 3856 (2010).
[CrossRef]

1978 (1)

A. C. Eckbreth, Appl. Phys. Lett. 32, 421 (1978).
[CrossRef]

Cornaggia, C.

Coudreau, S.

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, Appl. Phys. B 99, 7 (2010).
[CrossRef]

S. Grabielle, S. Coudreau, V. Crozatier, N. Forget, F. Lepetit, O. Gobert, and T. Oksenhendler, in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest(Optical Society of America, 2011), paper CF_P22.

Crozatier, V.

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, Appl. Phys. B 99, 7 (2010).
[CrossRef]

S. Grabielle, S. Coudreau, V. Crozatier, N. Forget, F. Lepetit, O. Gobert, and T. Oksenhendler, in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest(Optical Society of America, 2011), paper CF_P22.

Divall, M.

Eckbreth, A. C.

A. C. Eckbreth, Appl. Phys. Lett. 32, 421 (1978).
[CrossRef]

Forget, N.

A. Trisorio, S. Grabielle, M. Divall, N. Forget, and C. P. Hauri, Opt. Lett. 37, 2892 (2012).
[CrossRef]

A. Moulet, S. Grabielle, C. Cornaggia, N. Forget, and T. Oksenhendler, Opt. Lett. 35, 3856 (2010).
[CrossRef]

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, Appl. Phys. B 99, 7 (2010).
[CrossRef]

S. Grabielle, S. Coudreau, V. Crozatier, N. Forget, F. Lepetit, O. Gobert, and T. Oksenhendler, in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest(Optical Society of America, 2011), paper CF_P22.

Gobert, O.

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, Appl. Phys. B 99, 7 (2010).
[CrossRef]

S. Grabielle, S. Coudreau, V. Crozatier, N. Forget, F. Lepetit, O. Gobert, and T. Oksenhendler, in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest(Optical Society of America, 2011), paper CF_P22.

Grabielle, S.

A. Trisorio, S. Grabielle, M. Divall, N. Forget, and C. P. Hauri, Opt. Lett. 37, 2892 (2012).
[CrossRef]

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, Appl. Phys. B 99, 7 (2010).
[CrossRef]

A. Moulet, S. Grabielle, C. Cornaggia, N. Forget, and T. Oksenhendler, Opt. Lett. 35, 3856 (2010).
[CrossRef]

S. Grabielle, S. Coudreau, V. Crozatier, N. Forget, F. Lepetit, O. Gobert, and T. Oksenhendler, in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest(Optical Society of America, 2011), paper CF_P22.

Hauri, C. P.

Herzog, R.

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, Appl. Phys. B 99, 7 (2010).
[CrossRef]

Jiang, Y. L.

Kaplan, D.

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, Appl. Phys. B 99, 7 (2010).
[CrossRef]

Kobayashi, T.

Leng, Y. X.

Lepetit, F.

S. Grabielle, S. Coudreau, V. Crozatier, N. Forget, F. Lepetit, O. Gobert, and T. Oksenhendler, in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest(Optical Society of America, 2011), paper CF_P22.

Li, C.

Li, R. X.

Liu, J.

Liu, P.

Moulet, A.

Oksenhendler, T.

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, Appl. Phys. B 99, 7 (2010).
[CrossRef]

A. Moulet, S. Grabielle, C. Cornaggia, N. Forget, and T. Oksenhendler, Opt. Lett. 35, 3856 (2010).
[CrossRef]

T. Oksenhendler, “Self-referenced spectral interferometry theory,” arXiv:1204.4949v1 (2012).

S. Grabielle, S. Coudreau, V. Crozatier, N. Forget, F. Lepetit, O. Gobert, and T. Oksenhendler, in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest(Optical Society of America, 2011), paper CF_P22.

Song, L. W.

Trisorio, A.

Wang, D.

Xu, C. H.

Xu, Z. Z.

Appl. Phys. B (1)

T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, and D. Kaplan, Appl. Phys. B 99, 7 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

A. C. Eckbreth, Appl. Phys. Lett. 32, 421 (1978).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (2)

Other (2)

S. Grabielle, S. Coudreau, V. Crozatier, N. Forget, F. Lepetit, O. Gobert, and T. Oksenhendler, in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest(Optical Society of America, 2011), paper CF_P22.

T. Oksenhendler, “Self-referenced spectral interferometry theory,” arXiv:1204.4949v1 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic of TG-SRSI. (b) Experimental setup; H1, black plate; P1, P2, fused silica plate; M1, plane mirror with three quarters parts silver-coated; PM, parabolic reflector; H2, iris; L, lens; M2, plane mirror.

Fig. 2.
Fig. 2.

TG signal spectra at seven different points. Inset: locations of seven points (L, left; R, right, U, up; D, down; the number corresponds to the distance, e.g., L2U2 located at left 2 mm and up 2 mm from the center point).

Fig. 3.
Fig. 3.

(a) Measured spectra of the TG signal (green dot) and the testing-pulse (red dash-dot-dot), the retrieved spectrum of the testing-pulse (solid black), the spectral phase obtained by TG-SRSI (short-dot), WIZZLER (dash) and the calculation (dash-dot) when introduced at 0fs2 (center and black), +500fs2 (up and magenta), 500fs2 (down and blue) in the testing-pulse, respectively. (b) Retrieved temporal profile of the testing-pulse at 0fs2 (thick and thin black solid), +500fs2 (magenta dash-dot), 500fs2 (blue short-dot); three different conditions. The red dot and the black dash-dot-dot lines are the FTL temporal profile of the testing-pulse and the TG signal, respectively.

Fig. 4.
Fig. 4.

(a) Measured spectra of the TG signal (blue dash-dot), the testing-pulse (black solid), and the retrieved spectrum of testing-pulse (red short-dot). Retrieved spectral phase by TG-SRSI with (black short-dash) and without (magenta dash-dot-dot) the Brewster-angle located 1 mm thick fused silica plate. Cyan dashed line is the calculated spectral phase without the glass plate. (b) Retrieved temporal profile of the testing-pulse with (thick and thin black solid) and without (magenta dash-dot-dot) the 1 mm thick glass plate, which are 10.6 and 15.1 fs, respectively. Blue dashed and red short-dot lines are the FTL temporal profile of the testing-pulse and the TG signal, which are 9.6 and 6.8 fs, respectively.

Metrics