Abstract

An alcohol not full-filled high-birefringence photonic crystal fiber (HiBi-PCF) temperature sensor based on an optical fiber Sagnac interferometer (OFSI) is demonstrated and investigated in detail. A new phenomenon that the resonant dip wavelengths of the temperature sensor blueshift with temperature increasing is observed, which is contrary to that of the previously reported alcohol filled HiBi-PCF OFSI temperature sensor. By considering the influences of the group birefringence and the thermo expansion of alcohol, this phenomenon is explained very well. The temperature sensitivity of the proposed sensor is about 1.17nm/°C and is only one-sixth of that of the alcohol full-filled HiBi-PCF OSFI.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Yu, X. Li, X. Hong, Y. Deng, K. Song, Y. Geng, H. Wei, and W. Tong, Opt. Express 18, 15383 (2010).
    [CrossRef]
  2. F. Du, Y. Q. Lu, and S. T. Wu, Appl. Phys. Lett. 85, 2181 (2004).
    [CrossRef]
  3. W. Qian, C.-L. Zhao, Y. Wang, C. C. Chan, S. Liu, and W. Jin, Opt. Lett. 36, 3296 (2011).
    [CrossRef]
  4. S. Qiu, Y. Chen, F. Xu, and Y. Lu, Opt. Lett. 37, 863(2012).
    [CrossRef]
  5. Y. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, Appl. Phys. Lett. 100, 141101 (2012).
    [CrossRef]
  6. W. Qian, C.-L. Zhao, S. He, X. Dong, S. Zhang, Z. Zhang, S. Jin, J. Guo, and H. Wei, Opt. Lett. 36, 1548 (2011).
    [CrossRef]
  7. Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, Appl. Opt. 44, 2382 (2005).
    [CrossRef]
  8. C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, IEEE Photon. Technol. Lett. 16, 2535 (2004).
    [CrossRef]

2012 (2)

Y. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, Appl. Phys. Lett. 100, 141101 (2012).
[CrossRef]

S. Qiu, Y. Chen, F. Xu, and Y. Lu, Opt. Lett. 37, 863(2012).
[CrossRef]

2011 (2)

2010 (1)

2005 (1)

2004 (2)

F. Du, Y. Q. Lu, and S. T. Wu, Appl. Phys. Lett. 85, 2181 (2004).
[CrossRef]

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, IEEE Photon. Technol. Lett. 16, 2535 (2004).
[CrossRef]

Chan, C. C.

Chen, J.

Y. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, Appl. Phys. Lett. 100, 141101 (2012).
[CrossRef]

Chen, Y.

Demonkan, M. S.

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, IEEE Photon. Technol. Lett. 16, 2535 (2004).
[CrossRef]

Deng, Y.

Dong, X.

Du, F.

F. Du, Y. Q. Lu, and S. T. Wu, Appl. Phys. Lett. 85, 2181 (2004).
[CrossRef]

Feng, X.

Geng, Y.

Guo, J.

Han, T.

Y. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, Appl. Phys. Lett. 100, 141101 (2012).
[CrossRef]

He, S.

Hong, X.

Jin, S.

Jin, W.

W. Qian, C.-L. Zhao, Y. Wang, C. C. Chan, S. Liu, and W. Jin, Opt. Lett. 36, 3296 (2011).
[CrossRef]

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, IEEE Photon. Technol. Lett. 16, 2535 (2004).
[CrossRef]

Kai, G.

Li, X.

Liu, B.

Liu, S.

Liu, Y.

Y. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, Appl. Phys. Lett. 100, 141101 (2012).
[CrossRef]

Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, Appl. Opt. 44, 2382 (2005).
[CrossRef]

Lu, C.

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, IEEE Photon. Technol. Lett. 16, 2535 (2004).
[CrossRef]

Lu, Y.

Lu, Y. Q.

F. Du, Y. Q. Lu, and S. T. Wu, Appl. Phys. Lett. 85, 2181 (2004).
[CrossRef]

Qian, W.

Qiu, S.

Song, K.

Tong, W.

Wang, Y.

Wang, Z.

Y. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, Appl. Phys. Lett. 100, 141101 (2012).
[CrossRef]

Wei, C.

Y. Liu, Z. Wang, T. Han, C. Wei, and J. Chen, Appl. Phys. Lett. 100, 141101 (2012).
[CrossRef]

Wei, H.

Wu, S. T.

F. Du, Y. Q. Lu, and S. T. Wu, Appl. Phys. Lett. 85, 2181 (2004).
[CrossRef]

Xu, F.

Yang, X.

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, IEEE Photon. Technol. Lett. 16, 2535 (2004).
[CrossRef]

Yu, Y.

Yuan, S.

Zhang, S.

Zhang, W.

Zhang, Z.

Zhao, C.-L.

Zhou, G.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic setup of the proposed sensor. The blue line, the alcohol-filled HiBi-PCF; the black line, the alcohol-unfilled HiBi-PCF. Inset: SEM of used HiBi-PCF.

Fig. 2.
Fig. 2.

Birefringence B and the group birefringence Bg of the HiBi-PCF in response of the wavelength, respectively.

Fig. 3.
Fig. 3.

(a) Transmission spectra of the alcohol not full-filled HiBi-PCF OFSI when temperature increases. (b) Relationships between temperature and the wavelengths of the resonant dips.

Fig. 4.
Fig. 4.

(a) Transmission spectra of the alcohol not full-filled HiBi-PCF OFSI when temperature decreases. (b) Relationships between temperature and the resonant wavelengths.

Fig. 5.
Fig. 5.

(a) Relationship between temperature and the resonant wavelength. (b) Transmission spectrum of another alcohol not full-filled HiBi-PCF OFSI at 27°C.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T(λ)=[1cos(φ1+φ2)]/2,
λdip=B1L1+B2L2k.
Δλdip=ΔB1L1+ΔL1B1+ΔB2L2+ΔL2B2k,
ΔλdipΔB1L1+ΔL1(B1B2)k.
(dB1dλ)(dλdT),
ΔλdipΔT=λdipBg1+Bg2L2L1[Pt+αt(Bg1Bg2)]

Metrics