Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Direct Monte Carlo computation of time-resolved fluorescence in heterogeneous turbid media

Not Accessible

Your library or personal account may give you access

Abstract

We show that a multiexponential model for time-resolved fluorescence allows the use of an absorption-perturbation Monte Carlo (MC) approach based on stored photon path histories. This enables the rapid fitting of fluorescence yield, lifetimes, and background tissue absorptions in complex heterogeneous media within a few seconds, without the need for temporal convolutions or MC recalculation of photon path lengths. We validate this method using simulations with both a slab and a heterogeneous model of the mouse head.

© 2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media

A. Liebert, H. Wabnitz, N. Żołek, and R. Macdonald
Opt. Express 16(17) 13188-13202 (2008)

Accurate quantification of fluorescent targets within turbid media based on a decoupled fluorescence Monte Carlo model

Yong Deng, Zhaoyang Luo, Xu Jiang, Wenhao Xie, and Qingming Luo
Opt. Lett. 40(13) 3129-3132 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved