Abstract

We report on tuning the optical whispering gallery modes (WGMs) in a poly dimethyl siloxane-based (PDMS) microsphere resonator by more than 1 THz. The PDMS microsphere system consists of a solid spherical resonator directly formed with double stems on either side. The stems act like tie-rods for simple mechanical stretching of the microresonator, resulting in tuning of the WGMs by one free spectral range. Further investigations demonstrate that the WGM shift has a higher sensitivity (0.13nm/μN) to an applied force when the resonator is in its maximally stretched state compared to its relaxed state.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Vollmer and S. Arnold, Nat. Methods 5, 591 (2008).
    [CrossRef]
  2. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
    [CrossRef]
  3. W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, New J. Phys. 3, 14 (2001).
    [CrossRef]
  4. Y. Louyer, D. Meschede, and A. Rauschenbeutel, Phys. Rev. A 72, 031801 (2005).
    [CrossRef]
  5. Q. Ma, T. Rossmann, and Z. Guo, Meas. Sci. Technol. 21, 025310 (2010).
    [CrossRef]
  6. A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, Jpn. J. Appl. Phys. 43, 6138 (2004).
    [CrossRef]
  7. J. M. Ward and S. Nic Chormaic, Appl. Phys. B 100, 847 (2010).
    [CrossRef]
  8. A. Watkins, J. Ward, and S. Nic Chormaic, Jpn. J. Appl. Phys. 51, 052501 (2012).
    [CrossRef]
  9. T. Ioppolo, U. K. Ayaz, and M. V. Ötügen, J. Appl. Phys. 105, 013535 (2009).
    [CrossRef]
  10. J. P. Rezac and A. T. Rosenberger, Opt. Express 8, 605 (2001).
    [CrossRef]
  11. R. Henze, T. Seifert, J. M. Ward, and O. Benson, Opt. Lett. 36, 4536 (2011).
    [CrossRef]
  12. K. N. Dinyari, R. J. Barbour, D. A. Golter, and H. Wang, Opt. Express 19, 17966 (2011).
    [CrossRef]
  13. G. S. Wiederhecker, S. Manipatruni, S. Lee, and M. Lipson, Opt. Express 19, 2782 (2011).
    [CrossRef]
  14. T. P. Mayer Alegre, R. Perahia, and O. Painter, Opt. Express 18, 7872 (2010).
    [CrossRef]
  15. I. M. White, N. M. Hanumegowda, H. Oveys, and X. Fan, Opt. Express 13, 10754 (2005).
    [CrossRef]
  16. T. Ioppolo and M. V. Ötügen, Opt. Lett. 35, 2037 (2010).
    [CrossRef]
  17. T. Ioppolo, U. Ayaz, and M. V. Ötügen, Opt. Express 17, 16465 (2009).
    [CrossRef]
  18. M. Sumetsky, Y. Dulashko, and R. S. Windeler, Opt. Lett. 35, 1866 (2010).
    [CrossRef]
  19. S. Grilli, S. Coppola, V. Vespini, F. Merola, A. Finizio, and P. Ferraro, Proc. Natl. Acad. Sci. USA 108, 15106 (2011).
    [CrossRef]
  20. E. Schäffer, T. Thurn-Albrecht, T. P. Russell, and U. Steiner, Nature 403, 874 (2000).
    [CrossRef]
  21. P. Ferraro, S. Coppola, S. Grilli, M. Paturzo, and V. Vespini, Nat. Nanotechnol. 5, 429 (2010).
    [CrossRef]
  22. R. C. Huang and L. Anand, IMST (2005).
  23. T. K. Kim, J. K. Kim, and O. C. Jeong, Microelectron. Eng. 88, 1982 (2011).
    [CrossRef]
  24. K. T. Chau, X. X. Wei, R. H. C. Wong, and T. X. Yu, Mech. Mater. 32, 543 (2000).
    [CrossRef]

2012 (1)

A. Watkins, J. Ward, and S. Nic Chormaic, Jpn. J. Appl. Phys. 51, 052501 (2012).
[CrossRef]

2011 (5)

2010 (6)

M. Sumetsky, Y. Dulashko, and R. S. Windeler, Opt. Lett. 35, 1866 (2010).
[CrossRef]

P. Ferraro, S. Coppola, S. Grilli, M. Paturzo, and V. Vespini, Nat. Nanotechnol. 5, 429 (2010).
[CrossRef]

T. Ioppolo and M. V. Ötügen, Opt. Lett. 35, 2037 (2010).
[CrossRef]

T. P. Mayer Alegre, R. Perahia, and O. Painter, Opt. Express 18, 7872 (2010).
[CrossRef]

J. M. Ward and S. Nic Chormaic, Appl. Phys. B 100, 847 (2010).
[CrossRef]

Q. Ma, T. Rossmann, and Z. Guo, Meas. Sci. Technol. 21, 025310 (2010).
[CrossRef]

2009 (2)

T. Ioppolo, U. K. Ayaz, and M. V. Ötügen, J. Appl. Phys. 105, 013535 (2009).
[CrossRef]

T. Ioppolo, U. Ayaz, and M. V. Ötügen, Opt. Express 17, 16465 (2009).
[CrossRef]

2008 (1)

F. Vollmer and S. Arnold, Nat. Methods 5, 591 (2008).
[CrossRef]

2007 (1)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef]

2005 (2)

Y. Louyer, D. Meschede, and A. Rauschenbeutel, Phys. Rev. A 72, 031801 (2005).
[CrossRef]

I. M. White, N. M. Hanumegowda, H. Oveys, and X. Fan, Opt. Express 13, 10754 (2005).
[CrossRef]

2004 (1)

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, Jpn. J. Appl. Phys. 43, 6138 (2004).
[CrossRef]

2001 (2)

W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, New J. Phys. 3, 14 (2001).
[CrossRef]

J. P. Rezac and A. T. Rosenberger, Opt. Express 8, 605 (2001).
[CrossRef]

2000 (2)

E. Schäffer, T. Thurn-Albrecht, T. P. Russell, and U. Steiner, Nature 403, 874 (2000).
[CrossRef]

K. T. Chau, X. X. Wei, R. H. C. Wong, and T. X. Yu, Mech. Mater. 32, 543 (2000).
[CrossRef]

Anand, L.

R. C. Huang and L. Anand, IMST (2005).

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef]

Arnold, S.

F. Vollmer and S. Arnold, Nat. Methods 5, 591 (2008).
[CrossRef]

Ayaz, U.

Ayaz, U. K.

T. Ioppolo, U. K. Ayaz, and M. V. Ötügen, J. Appl. Phys. 105, 013535 (2009).
[CrossRef]

Barbour, R. J.

Benson, O.

Chau, K. T.

K. T. Chau, X. X. Wei, R. H. C. Wong, and T. X. Yu, Mech. Mater. 32, 543 (2000).
[CrossRef]

Chiba, A.

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, Jpn. J. Appl. Phys. 43, 6138 (2004).
[CrossRef]

Coppola, S.

S. Grilli, S. Coppola, V. Vespini, F. Merola, A. Finizio, and P. Ferraro, Proc. Natl. Acad. Sci. USA 108, 15106 (2011).
[CrossRef]

P. Ferraro, S. Coppola, S. Grilli, M. Paturzo, and V. Vespini, Nat. Nanotechnol. 5, 429 (2010).
[CrossRef]

Dinyari, K. N.

Dulashko, Y.

Fan, X.

Ferraro, P.

S. Grilli, S. Coppola, V. Vespini, F. Merola, A. Finizio, and P. Ferraro, Proc. Natl. Acad. Sci. USA 108, 15106 (2011).
[CrossRef]

P. Ferraro, S. Coppola, S. Grilli, M. Paturzo, and V. Vespini, Nat. Nanotechnol. 5, 429 (2010).
[CrossRef]

Finizio, A.

S. Grilli, S. Coppola, V. Vespini, F. Merola, A. Finizio, and P. Ferraro, Proc. Natl. Acad. Sci. USA 108, 15106 (2011).
[CrossRef]

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef]

Fujiwara, H.

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, Jpn. J. Appl. Phys. 43, 6138 (2004).
[CrossRef]

Golter, D. A.

Grilli, S.

S. Grilli, S. Coppola, V. Vespini, F. Merola, A. Finizio, and P. Ferraro, Proc. Natl. Acad. Sci. USA 108, 15106 (2011).
[CrossRef]

P. Ferraro, S. Coppola, S. Grilli, M. Paturzo, and V. Vespini, Nat. Nanotechnol. 5, 429 (2010).
[CrossRef]

Guo, Z.

Q. Ma, T. Rossmann, and Z. Guo, Meas. Sci. Technol. 21, 025310 (2010).
[CrossRef]

Hanumegowda, N. M.

Hare, J.

W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, New J. Phys. 3, 14 (2001).
[CrossRef]

Henze, R.

Hotta, J.

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, Jpn. J. Appl. Phys. 43, 6138 (2004).
[CrossRef]

Huang, R. C.

R. C. Huang and L. Anand, IMST (2005).

Ilchenko, V. S.

W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, New J. Phys. 3, 14 (2001).
[CrossRef]

Ioppolo, T.

Jeong, O. C.

T. K. Kim, J. K. Kim, and O. C. Jeong, Microelectron. Eng. 88, 1982 (2011).
[CrossRef]

Kim, J. K.

T. K. Kim, J. K. Kim, and O. C. Jeong, Microelectron. Eng. 88, 1982 (2011).
[CrossRef]

Kim, T. K.

T. K. Kim, J. K. Kim, and O. C. Jeong, Microelectron. Eng. 88, 1982 (2011).
[CrossRef]

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef]

Lee, S.

Lefèvre-Seguin, V.

W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, New J. Phys. 3, 14 (2001).
[CrossRef]

Lipson, M.

Long, R.

W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, New J. Phys. 3, 14 (2001).
[CrossRef]

Louyer, Y.

Y. Louyer, D. Meschede, and A. Rauschenbeutel, Phys. Rev. A 72, 031801 (2005).
[CrossRef]

Ma, Q.

Q. Ma, T. Rossmann, and Z. Guo, Meas. Sci. Technol. 21, 025310 (2010).
[CrossRef]

Manipatruni, S.

Mayer Alegre, T. P.

Merola, F.

S. Grilli, S. Coppola, V. Vespini, F. Merola, A. Finizio, and P. Ferraro, Proc. Natl. Acad. Sci. USA 108, 15106 (2011).
[CrossRef]

Meschede, D.

Y. Louyer, D. Meschede, and A. Rauschenbeutel, Phys. Rev. A 72, 031801 (2005).
[CrossRef]

Nic Chormaic, S.

A. Watkins, J. Ward, and S. Nic Chormaic, Jpn. J. Appl. Phys. 51, 052501 (2012).
[CrossRef]

J. M. Ward and S. Nic Chormaic, Appl. Phys. B 100, 847 (2010).
[CrossRef]

Ötügen, M. V.

Oveys, H.

Painter, O.

Paturzo, M.

P. Ferraro, S. Coppola, S. Grilli, M. Paturzo, and V. Vespini, Nat. Nanotechnol. 5, 429 (2010).
[CrossRef]

Perahia, R.

Rauschenbeutel, A.

Y. Louyer, D. Meschede, and A. Rauschenbeutel, Phys. Rev. A 72, 031801 (2005).
[CrossRef]

Rezac, J. P.

Rosenberger, A. T.

Rossmann, T.

Q. Ma, T. Rossmann, and Z. Guo, Meas. Sci. Technol. 21, 025310 (2010).
[CrossRef]

Russell, T. P.

E. Schäffer, T. Thurn-Albrecht, T. P. Russell, and U. Steiner, Nature 403, 874 (2000).
[CrossRef]

Sasaki, K.

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, Jpn. J. Appl. Phys. 43, 6138 (2004).
[CrossRef]

Schäffer, E.

E. Schäffer, T. Thurn-Albrecht, T. P. Russell, and U. Steiner, Nature 403, 874 (2000).
[CrossRef]

Seifert, T.

Steiner, U.

E. Schäffer, T. Thurn-Albrecht, T. P. Russell, and U. Steiner, Nature 403, 874 (2000).
[CrossRef]

Sumetsky, M.

Takeuchi, S.

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, Jpn. J. Appl. Phys. 43, 6138 (2004).
[CrossRef]

Thurn-Albrecht, T.

E. Schäffer, T. Thurn-Albrecht, T. P. Russell, and U. Steiner, Nature 403, 874 (2000).
[CrossRef]

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef]

Vespini, V.

S. Grilli, S. Coppola, V. Vespini, F. Merola, A. Finizio, and P. Ferraro, Proc. Natl. Acad. Sci. USA 108, 15106 (2011).
[CrossRef]

P. Ferraro, S. Coppola, S. Grilli, M. Paturzo, and V. Vespini, Nat. Nanotechnol. 5, 429 (2010).
[CrossRef]

Vollmer, F.

F. Vollmer and S. Arnold, Nat. Methods 5, 591 (2008).
[CrossRef]

von Klitzing, W.

W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, New J. Phys. 3, 14 (2001).
[CrossRef]

Wang, H.

Ward, J.

A. Watkins, J. Ward, and S. Nic Chormaic, Jpn. J. Appl. Phys. 51, 052501 (2012).
[CrossRef]

Ward, J. M.

Watkins, A.

A. Watkins, J. Ward, and S. Nic Chormaic, Jpn. J. Appl. Phys. 51, 052501 (2012).
[CrossRef]

Wei, X. X.

K. T. Chau, X. X. Wei, R. H. C. Wong, and T. X. Yu, Mech. Mater. 32, 543 (2000).
[CrossRef]

White, I. M.

Wiederhecker, G. S.

Windeler, R. S.

Wong, R. H. C.

K. T. Chau, X. X. Wei, R. H. C. Wong, and T. X. Yu, Mech. Mater. 32, 543 (2000).
[CrossRef]

Yu, T. X.

K. T. Chau, X. X. Wei, R. H. C. Wong, and T. X. Yu, Mech. Mater. 32, 543 (2000).
[CrossRef]

Appl. Phys. B (1)

J. M. Ward and S. Nic Chormaic, Appl. Phys. B 100, 847 (2010).
[CrossRef]

J. Appl. Phys. (1)

T. Ioppolo, U. K. Ayaz, and M. V. Ötügen, J. Appl. Phys. 105, 013535 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (2)

A. Watkins, J. Ward, and S. Nic Chormaic, Jpn. J. Appl. Phys. 51, 052501 (2012).
[CrossRef]

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, Jpn. J. Appl. Phys. 43, 6138 (2004).
[CrossRef]

Meas. Sci. Technol. (1)

Q. Ma, T. Rossmann, and Z. Guo, Meas. Sci. Technol. 21, 025310 (2010).
[CrossRef]

Mech. Mater. (1)

K. T. Chau, X. X. Wei, R. H. C. Wong, and T. X. Yu, Mech. Mater. 32, 543 (2000).
[CrossRef]

Microelectron. Eng. (1)

T. K. Kim, J. K. Kim, and O. C. Jeong, Microelectron. Eng. 88, 1982 (2011).
[CrossRef]

Nat. Methods (1)

F. Vollmer and S. Arnold, Nat. Methods 5, 591 (2008).
[CrossRef]

Nat. Nanotechnol. (1)

P. Ferraro, S. Coppola, S. Grilli, M. Paturzo, and V. Vespini, Nat. Nanotechnol. 5, 429 (2010).
[CrossRef]

Nature (1)

E. Schäffer, T. Thurn-Albrecht, T. P. Russell, and U. Steiner, Nature 403, 874 (2000).
[CrossRef]

New J. Phys. (1)

W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, New J. Phys. 3, 14 (2001).
[CrossRef]

Opt. Express (6)

Opt. Lett. (3)

Phys. Rev. A (1)

Y. Louyer, D. Meschede, and A. Rauschenbeutel, Phys. Rev. A 72, 031801 (2005).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

S. Grilli, S. Coppola, V. Vespini, F. Merola, A. Finizio, and P. Ferraro, Proc. Natl. Acad. Sci. USA 108, 15106 (2011).
[CrossRef]

Science (1)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
[CrossRef]

Other (1)

R. C. Huang and L. Anand, IMST (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of microsphere formation. (a) PDMS droplet on a glass substrate below a charged LN plate. The arrow indicates the force drawing the polymer upward. (b) Liquid forms a bridge between the glass substrate and the LN. (c) Bridge thins and the flow of liquid creates a liquid bead. The PDMS is rapidly thermally cured creating a solid sphere. (d) Image of a 37 μm solid oblate PDMS sphere on a string of length, L237μm, the stem radii are 6μm. The coupling tapered optical fiber is also visible.

Fig. 2.
Fig. 2.

Experimental setup. The transmitted WGM spectra are detected by a photodiode and recorded on a digital storage oscilloscope. A stepper-motor-driven translation stage, with a 1 μm resolution, is used to push the mount and stretch the PDMS sphere. The arrows indicate the direction of the motion during stretching. OSA: optical spectrum analyzer.

Fig. 3.
Fig. 3.

WGM shift for increased stretching. Top: WGM wavelength shift versus motor position. The total shift is over 1 FSR (15nm). The solid line is a third order polynomial fit. The region highlighted by the box is shown in the lower plot. Bottom: The WGM frequency shift versus motor position. The inset shows the fine tuning of the WGM using the piezo actuator. The piezo is rated for 4.0±1.5μm displacement for 150V.

Fig. 4.
Fig. 4.

Sensitivity measurements showing the WGM shift for fixed piezo voltage at different motor positions. The solid curve is a third order polynomial fit. Inset: theoretical plot showing the WGM shift dependence on applied force.

Metrics