Abstract

We propose and demonstrate a compact acoustic sensor comprising a 2 μm diam, 35 mm length optical microfiber coiled around a 3 mm diam air-backed mandrel. Acoustic waves induce local pressure variations that change the mandrel diameter and thus the optical path length of the mode propagating in the microfiber. The phase modulation is detected via a single-fiber polarimetric interferometer. The low stiffness and minimum bend radii of microfibers gives rise to extremely small package sizes without compromising acoustic responsivity.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Niu, Y. Hu, Z. Hu, and H. Luo, IEEE Photon. Technol. Lett. 23, 1499 (2011).
    [CrossRef]
  2. H. Wagaard, G. B. Havsgård, and G. Wang, J. Lightwave Technol. 19, 994 (2001).
    [CrossRef]
  3. G. H. Ames and J. M. Maguire, J. Acoust. Soc. Am. 121, 1392 (2007).
    [CrossRef]
  4. Corning ClearCurve optical fiber datasheet, http://www.corning.com .
  5. L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, Nano Lett. 5, 259 (2005).
    [CrossRef]
  6. G. Brambilla, J. Opt. 12, 043001 (2010).
    [CrossRef]
  7. S. C. Rashleigh, Opt. Lett. 5, 392 (1980).
    [CrossRef]
  8. G. Y. Chen, T. Lee, R. Ismaeel, G. Brambilla, and T. P. Newson, IEEE Photon. Technol. Lett. 24, 860(2012).
    [CrossRef]

2012 (1)

G. Y. Chen, T. Lee, R. Ismaeel, G. Brambilla, and T. P. Newson, IEEE Photon. Technol. Lett. 24, 860(2012).
[CrossRef]

2011 (1)

S. Niu, Y. Hu, Z. Hu, and H. Luo, IEEE Photon. Technol. Lett. 23, 1499 (2011).
[CrossRef]

2010 (1)

G. Brambilla, J. Opt. 12, 043001 (2010).
[CrossRef]

2007 (1)

G. H. Ames and J. M. Maguire, J. Acoust. Soc. Am. 121, 1392 (2007).
[CrossRef]

2005 (1)

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, Nano Lett. 5, 259 (2005).
[CrossRef]

2001 (1)

1980 (1)

Ames, G. H.

G. H. Ames and J. M. Maguire, J. Acoust. Soc. Am. 121, 1392 (2007).
[CrossRef]

Brambilla, G.

G. Y. Chen, T. Lee, R. Ismaeel, G. Brambilla, and T. P. Newson, IEEE Photon. Technol. Lett. 24, 860(2012).
[CrossRef]

G. Brambilla, J. Opt. 12, 043001 (2010).
[CrossRef]

Chen, G. Y.

G. Y. Chen, T. Lee, R. Ismaeel, G. Brambilla, and T. P. Newson, IEEE Photon. Technol. Lett. 24, 860(2012).
[CrossRef]

Chen, X.

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, Nano Lett. 5, 259 (2005).
[CrossRef]

Gattass, R. R.

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, Nano Lett. 5, 259 (2005).
[CrossRef]

Havsgård, G. B.

He, S.

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, Nano Lett. 5, 259 (2005).
[CrossRef]

Hu, Y.

S. Niu, Y. Hu, Z. Hu, and H. Luo, IEEE Photon. Technol. Lett. 23, 1499 (2011).
[CrossRef]

Hu, Z.

S. Niu, Y. Hu, Z. Hu, and H. Luo, IEEE Photon. Technol. Lett. 23, 1499 (2011).
[CrossRef]

Ismaeel, R.

G. Y. Chen, T. Lee, R. Ismaeel, G. Brambilla, and T. P. Newson, IEEE Photon. Technol. Lett. 24, 860(2012).
[CrossRef]

Lee, T.

G. Y. Chen, T. Lee, R. Ismaeel, G. Brambilla, and T. P. Newson, IEEE Photon. Technol. Lett. 24, 860(2012).
[CrossRef]

Liu, L.

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, Nano Lett. 5, 259 (2005).
[CrossRef]

Lou, J.

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, Nano Lett. 5, 259 (2005).
[CrossRef]

Luo, H.

S. Niu, Y. Hu, Z. Hu, and H. Luo, IEEE Photon. Technol. Lett. 23, 1499 (2011).
[CrossRef]

Maguire, J. M.

G. H. Ames and J. M. Maguire, J. Acoust. Soc. Am. 121, 1392 (2007).
[CrossRef]

Mazur, E.

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, Nano Lett. 5, 259 (2005).
[CrossRef]

Newson, T. P.

G. Y. Chen, T. Lee, R. Ismaeel, G. Brambilla, and T. P. Newson, IEEE Photon. Technol. Lett. 24, 860(2012).
[CrossRef]

Niu, S.

S. Niu, Y. Hu, Z. Hu, and H. Luo, IEEE Photon. Technol. Lett. 23, 1499 (2011).
[CrossRef]

Rashleigh, S. C.

Tong, L.

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, Nano Lett. 5, 259 (2005).
[CrossRef]

Wagaard, H.

Wang, G.

IEEE Photon. Technol. Lett. (2)

S. Niu, Y. Hu, Z. Hu, and H. Luo, IEEE Photon. Technol. Lett. 23, 1499 (2011).
[CrossRef]

G. Y. Chen, T. Lee, R. Ismaeel, G. Brambilla, and T. P. Newson, IEEE Photon. Technol. Lett. 24, 860(2012).
[CrossRef]

J. Acoust. Soc. Am. (1)

G. H. Ames and J. M. Maguire, J. Acoust. Soc. Am. 121, 1392 (2007).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. (1)

G. Brambilla, J. Opt. 12, 043001 (2010).
[CrossRef]

Nano Lett. (1)

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, Nano Lett. 5, 259 (2005).
[CrossRef]

Opt. Lett. (1)

Other (1)

Corning ClearCurve optical fiber datasheet, http://www.corning.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Working principle of the ABM and (b) a schematic.

Fig. 2.
Fig. 2.

Schematic of the experimental setup. TLS, tunable laser source; PMC, polarization-maintaining coupler; PC, polarization controller; BD, balanced detector; PBS, polarization beam splitter; OSC, digital oscilloscope; SG, signal generator; LS, loudspeaker with power amplifier; PM, polarization-maintaining fiber; SMF, single-mode fiber.

Fig. 3.
Fig. 3.

Measured relationship between differential phase 2Δ(βL)a and acoustic pressure at a frequency of 70 Hz, with linear fitting.

Fig. 4.
Fig. 4.

Measured acoustic frequency response and sensitivity.

Fig. 5.
Fig. 5.

Optical signal and loudspeaker drive signal at a frequency of 1562.5 Hz. The temporal offset is due to the time taken for acoustic pressure to reach the sensor.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Eout=R2·P·M·P·R1·Ein.
Ein=(E0).
R1=(cosαsinαsinαcosα)andR2=(cosαsinαsinαcosα).
P=(eiϕ00eiϕ),
ϕ=ΔβL+Δ(βL)a2.
M=(1001).
Eout=(ExEy)=E·(e2iϕcos2α+e2iϕsin2αe2iϕsinαcosα+e2iϕsinαcosα),
Pout=(PxPy)=P·(1sin2(2α)cos2(2ϕ)sin2(2α)cos2(2ϕ)).
T=PxPyPx+Py=cos(4ϕ)=cos(2(ΔβL+Δ(βL)a)).
T=sin(2Δ(βL)a).

Metrics