Abstract

We propose and experimentally demonstrate a novel scheme to generate multichannel optical frequency-locked multicarrier by using multichannel recirculating frequency shifter (MC-RFS) loop. By using MC-RFS loop, we can generate N channels subcarriers each round trip without interference. These subcarriers of each channel are stable and frequency-locked, which can be used for a multichannel WDM source. Finally, the double channels RFS loop is carried out for demonstration in our experiment with double-carriers source. Using this scheme, we successfully generate 54 frequency-locked subcarriers with 25 GHz frequency spacing in two channels and each channel has 27 tones.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Fujiwara, M. Teshima, J. Kani, H. Suzuki, N. Takachio, and K. Iwatsuki, J. Lightwave Technol. 21, 2705 (2003).
    [CrossRef]
  2. J. Yu, Z. Dong, and N. Chi, IEEE Photon. Technol. Lett. 23, 1061 (2011).
    [CrossRef]
  3. A. Clarke, D. Williams, M. Roelens, and B. Eggleton, IEEE Photon. Technol. Lett. 28, 97 (2010).
    [CrossRef]
  4. P. J. Delfyett, S. Gee, M. Choi, H. Izadpanah, W. Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, J. Lightwave Technol. 24, 2701 (2006).
    [CrossRef]
  5. K. Tamura, H. Kubota, and M. Nakazawa, J. Lightwave Technol. 36, 773 (2000).
    [CrossRef]
  6. F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. Roelens, P. Petropoulos, and D. J. Richardson, Opt. Express 14, 7617 (2006).
    [CrossRef]
  7. R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, Opt. Lett. 35, 3234 (2010).
    [CrossRef]
  8. T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, J. Lightwave Technol. 27, 4297 (2009).
    [CrossRef]
  9. J. Li, X. Li, X. Zhang, F. Tian, and L. Xi, Opt. Express 18, 17597 (2010).
    [CrossRef]
  10. J. Zhang, J. Yu, N. Chi, Y. Shao, L. Tao, Y. Wang, and X. Li, IEEE Photon. Technol. Lett. 24, 1405 (2012).
    [CrossRef]
  11. X. Li, J. Yu, Z. Dong, J. Zhang, Y. Shao, and N. Chi, Opt. Express 20, 21833 (2012).
    [CrossRef]

2012

J. Zhang, J. Yu, N. Chi, Y. Shao, L. Tao, Y. Wang, and X. Li, IEEE Photon. Technol. Lett. 24, 1405 (2012).
[CrossRef]

X. Li, J. Yu, Z. Dong, J. Zhang, Y. Shao, and N. Chi, Opt. Express 20, 21833 (2012).
[CrossRef]

2011

J. Yu, Z. Dong, and N. Chi, IEEE Photon. Technol. Lett. 23, 1061 (2011).
[CrossRef]

2010

2009

2006

2003

2000

K. Tamura, H. Kubota, and M. Nakazawa, J. Lightwave Technol. 36, 773 (2000).
[CrossRef]

Chi, N.

J. Zhang, J. Yu, N. Chi, Y. Shao, L. Tao, Y. Wang, and X. Li, IEEE Photon. Technol. Lett. 24, 1405 (2012).
[CrossRef]

X. Li, J. Yu, Z. Dong, J. Zhang, Y. Shao, and N. Chi, Opt. Express 20, 21833 (2012).
[CrossRef]

J. Yu, Z. Dong, and N. Chi, IEEE Photon. Technol. Lett. 23, 1061 (2011).
[CrossRef]

Choi, M.

Clarke, A.

A. Clarke, D. Williams, M. Roelens, and B. Eggleton, IEEE Photon. Technol. Lett. 28, 97 (2010).
[CrossRef]

Delfyett, P. J.

Dong, Z.

X. Li, J. Yu, Z. Dong, J. Zhang, Y. Shao, and N. Chi, Opt. Express 20, 21833 (2012).
[CrossRef]

J. Yu, Z. Dong, and N. Chi, IEEE Photon. Technol. Lett. 23, 1061 (2011).
[CrossRef]

Eggleton, B.

A. Clarke, D. Williams, M. Roelens, and B. Eggleton, IEEE Photon. Technol. Lett. 28, 97 (2010).
[CrossRef]

Finot, C.

Fujiwara, M.

Gee, S.

Ibsen, M.

Iwatsuki, K.

Izadpanah, H.

Kani, J.

Komukai, T.

Kubota, H.

K. Tamura, H. Kubota, and M. Nakazawa, J. Lightwave Technol. 36, 773 (2000).
[CrossRef]

Leaird, D. E.

Lee, W.

Li, J.

Li, X.

Long, C. M.

Mukasa, K.

Nakazawa, M.

K. Tamura, H. Kubota, and M. Nakazawa, J. Lightwave Technol. 36, 773 (2000).
[CrossRef]

Ozharar, S.

Parmigiani, F.

Petropoulos, P.

Quinlan, F.

Richardson, D. J.

Roelens, M.

A. Clarke, D. Williams, M. Roelens, and B. Eggleton, IEEE Photon. Technol. Lett. 28, 97 (2010).
[CrossRef]

F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. Roelens, P. Petropoulos, and D. J. Richardson, Opt. Express 14, 7617 (2006).
[CrossRef]

Shao, Y.

J. Zhang, J. Yu, N. Chi, Y. Shao, L. Tao, Y. Wang, and X. Li, IEEE Photon. Technol. Lett. 24, 1405 (2012).
[CrossRef]

X. Li, J. Yu, Z. Dong, J. Zhang, Y. Shao, and N. Chi, Opt. Express 20, 21833 (2012).
[CrossRef]

Supradeepa, V. R.

Suzuki, H.

Suzuki, K.

Takachio, N.

Takada, A.

Tamura, K.

K. Tamura, H. Kubota, and M. Nakazawa, J. Lightwave Technol. 36, 773 (2000).
[CrossRef]

Tao, L.

J. Zhang, J. Yu, N. Chi, Y. Shao, L. Tao, Y. Wang, and X. Li, IEEE Photon. Technol. Lett. 24, 1405 (2012).
[CrossRef]

Teshima, M.

Tian, F.

Wang, Y.

J. Zhang, J. Yu, N. Chi, Y. Shao, L. Tao, Y. Wang, and X. Li, IEEE Photon. Technol. Lett. 24, 1405 (2012).
[CrossRef]

Weiner, A. M.

Williams, D.

A. Clarke, D. Williams, M. Roelens, and B. Eggleton, IEEE Photon. Technol. Lett. 28, 97 (2010).
[CrossRef]

Wu, R.

Xi, L.

Yamamoto, T.

Yilmaz, T.

Yu, J.

J. Zhang, J. Yu, N. Chi, Y. Shao, L. Tao, Y. Wang, and X. Li, IEEE Photon. Technol. Lett. 24, 1405 (2012).
[CrossRef]

X. Li, J. Yu, Z. Dong, J. Zhang, Y. Shao, and N. Chi, Opt. Express 20, 21833 (2012).
[CrossRef]

J. Yu, Z. Dong, and N. Chi, IEEE Photon. Technol. Lett. 23, 1061 (2011).
[CrossRef]

Zhang, J.

X. Li, J. Yu, Z. Dong, J. Zhang, Y. Shao, and N. Chi, Opt. Express 20, 21833 (2012).
[CrossRef]

J. Zhang, J. Yu, N. Chi, Y. Shao, L. Tao, Y. Wang, and X. Li, IEEE Photon. Technol. Lett. 24, 1405 (2012).
[CrossRef]

Zhang, X.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Principle of multichannel optical frequency-locked multicarrier source generation based on multichannel RFS loop.

Fig. 2.
Fig. 2.

Experimental setup for multichannel frequency-locked multicarrier generation based on double carriers injection.

Fig. 3.
Fig. 3.

Optical spectrum after I/Q modulator when the RFS loop is open (OSA RBW=0.02nm).

Fig. 4.
Fig. 4.

Output of the RFS loop without double seed source injection (OSA RBW=0.02nm).

Fig. 5.
Fig. 5.

Optical spectrum of the output of each channel when the EDFA in other channel is off (OSA RBW=0.02nm).

Fig. 6.
Fig. 6.

Optical spectrum of two channels subcarriers (OSA RBW=0.02nm).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Ec=n=1NEoexp(j2πfnt+ϕn).
Eout(t)=EI(t)+jβEQ(t)EinJ1(π2R)exp(j2πfst).
F(t)=grexp(ar)J1(π2R)exp(j2πfst)exp(jθ).
Eout_M(t)=m=0Mn=1NEoexp[j2π(fn+mfs)t+ϕn]exp(jmθn).

Metrics