Abstract

The precise measurement of the distance of fast laterally moving rough surfaces is important in several applications such as lathe monitoring. A nonincremental interferometer based on two tilted interference fringe systems and a precise phase-difference estimation has been realized for this task. However, due to the speckle effect, the two scattered light signals exhibit different phase jumps and random envelopes causing small correlation coefficients and high uncertainties of the phase difference as well as the distance. In this Letter we present for the first time a method to enhance the signal correlation coefficient significantly. The interference signals are generated by scattered light of a rough surface from two different directions. A matching of illumination and receiving optic is performed. By this novel method, distance measurements with an uncertainty down to 1.2 μm at about 10m/s lateral moving velocity have been achieved. Together with the simultaneously measured lateral velocity, the shape of rotating objects can be precisely determined.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Dorsch, G. Häusler, and J. Herrmann, Appl. Opt. 33, 1306 (1994).
    [CrossRef]
  2. L. Sheng-Hua and L. Cheng-Chung, Meas. Sci. Technol. 13, 1382 (2002).
    [CrossRef]
  3. A. Kempe, S. Schlamp, and T. Rösgen, Opt. Lett. 28, 1323 (2003).
    [CrossRef]
  4. G. Pedrini, W. Osten, and M. E. Gusev, Appl. Opt. 45, 3456 (2006).
    [CrossRef]
  5. T. Pfister, L. Büttner, and J. Czarske, Meas. Sci. Technol. 16, 627 (2005).
    [CrossRef]
  6. L. Büttner, T. Pfister, and J. Czarske, Opt. Lett. 31, 1217 (2006).
    [CrossRef]
  7. P. Günther, T. Pfister, L. Büttner, and J. Czarske, Opt. Express 17, 2611 (2009).
    [CrossRef]
  8. P. Günther, T. Pfister, and J. Czarske, Opt. Lasers Eng. 49, 1190 (2011).
    [CrossRef]
  9. U. Vry and A. F. Fercher, J. Opt. Soc. Am. A 3, 988 (1986).
    [CrossRef]

2011 (1)

P. Günther, T. Pfister, and J. Czarske, Opt. Lasers Eng. 49, 1190 (2011).
[CrossRef]

2009 (1)

2006 (2)

2005 (1)

T. Pfister, L. Büttner, and J. Czarske, Meas. Sci. Technol. 16, 627 (2005).
[CrossRef]

2003 (1)

2002 (1)

L. Sheng-Hua and L. Cheng-Chung, Meas. Sci. Technol. 13, 1382 (2002).
[CrossRef]

1994 (1)

1986 (1)

Büttner, L.

Cheng-Chung, L.

L. Sheng-Hua and L. Cheng-Chung, Meas. Sci. Technol. 13, 1382 (2002).
[CrossRef]

Czarske, J.

P. Günther, T. Pfister, and J. Czarske, Opt. Lasers Eng. 49, 1190 (2011).
[CrossRef]

P. Günther, T. Pfister, L. Büttner, and J. Czarske, Opt. Express 17, 2611 (2009).
[CrossRef]

L. Büttner, T. Pfister, and J. Czarske, Opt. Lett. 31, 1217 (2006).
[CrossRef]

T. Pfister, L. Büttner, and J. Czarske, Meas. Sci. Technol. 16, 627 (2005).
[CrossRef]

Dorsch, R. G.

Fercher, A. F.

Günther, P.

P. Günther, T. Pfister, and J. Czarske, Opt. Lasers Eng. 49, 1190 (2011).
[CrossRef]

P. Günther, T. Pfister, L. Büttner, and J. Czarske, Opt. Express 17, 2611 (2009).
[CrossRef]

Gusev, M. E.

Häusler, G.

Herrmann, J.

Kempe, A.

Osten, W.

Pedrini, G.

Pfister, T.

P. Günther, T. Pfister, and J. Czarske, Opt. Lasers Eng. 49, 1190 (2011).
[CrossRef]

P. Günther, T. Pfister, L. Büttner, and J. Czarske, Opt. Express 17, 2611 (2009).
[CrossRef]

L. Büttner, T. Pfister, and J. Czarske, Opt. Lett. 31, 1217 (2006).
[CrossRef]

T. Pfister, L. Büttner, and J. Czarske, Meas. Sci. Technol. 16, 627 (2005).
[CrossRef]

Rösgen, T.

Schlamp, S.

Sheng-Hua, L.

L. Sheng-Hua and L. Cheng-Chung, Meas. Sci. Technol. 13, 1382 (2002).
[CrossRef]

Vry, U.

Appl. Opt. (2)

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (2)

T. Pfister, L. Büttner, and J. Czarske, Meas. Sci. Technol. 16, 627 (2005).
[CrossRef]

L. Sheng-Hua and L. Cheng-Chung, Meas. Sci. Technol. 13, 1382 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (1)

P. Günther, T. Pfister, and J. Czarske, Opt. Lasers Eng. 49, 1190 (2011).
[CrossRef]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic setup of the laser Doppler distance sensor with phase-difference evaluation (P-LDDS). Two superposed and tilted interference fringe systems of different wavelengths are generated. The lateral velocity vx is determined by the measured Doppler frequency fD and the known fringe spacing d. The axial position z results from the measured signal phase difference ϕ and the known tilting angle ψ of the fringe systems.

Fig. 2.
Fig. 2.

Simulated values for the correlation coefficient ρ characterizing the similarity of two scattered light signals from a rough surface (Ra=0.2μm) in dependence on the tilting angle ψ of the two interference fringe systems and the resulting phase uncertainty σϕ for receiving angles ζ1=ζ2=0 (conventional receiving optic).

Fig. 3.
Fig. 3.

Measured correlation coefficient ρ of two scattered light signals from a rough surface (Ra=1.1μm) in dependence on their different receiving angles ζ1 and ζ2 (matched receiving optic with ζ1+ζ2=ψ).

Fig. 4.
Fig. 4.

Measurement setup (left) and measured distance variation with mismatched (right top; σz,tot=5.1μm) and matched receiving optic of the P-LDDS (right bottom; σz,tot=1.2μm).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϕ(z)=s·z+ϕ0,
ρ(s1,s2)=n=1N(s1(nΔt))(s2(nΔt))(N1)σs1σs2.

Metrics