Abstract

The precise measurement of the distance of fast laterally moving rough surfaces is important in several applications such as lathe monitoring. A nonincremental interferometer based on two tilted interference fringe systems and a precise phase-difference estimation has been realized for this task. However, due to the speckle effect, the two scattered light signals exhibit different phase jumps and random envelopes causing small correlation coefficients and high uncertainties of the phase difference as well as the distance. In this Letter we present for the first time a method to enhance the signal correlation coefficient significantly. The interference signals are generated by scattered light of a rough surface from two different directions. A matching of illumination and receiving optic is performed. By this novel method, distance measurements with an uncertainty down to 1.2 μm at about 10m/s lateral moving velocity have been achieved. Together with the simultaneously measured lateral velocity, the shape of rotating objects can be precisely determined.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription