Abstract

We experimentally observe an intriguing phenomenon of complex spatio-temporal dynamics in a commercial optically pumped semiconductor laser with intracavity second harmonic generation. We numerically verify that the experimental results come from the total mode locking of transverse electromagnetic modes (TEM00) and higher-order modes with significant astigmatism. The scenarios of the spatio-temporal dynamics are quite similar to the phenomena in soft-aperture Kerr-lens mode locked Ti:sapphire lasers.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Spence, P. N. Kean, and W. Sibbett, Opt. Lett. 16, 42 (1991).
    [CrossRef]
  2. J. L. A. Chilla and O. E. Martinez, J. Opt. Soc. Am. B 10, 638 (1993).
    [CrossRef]
  3. G. Cerullo, S. De Silvestri, V. Magni, and L. Pallaro, Opt. Lett. 19, 807 (1994).
    [CrossRef]
  4. D. Cote and H. M. van Driel, Opt. Lett. 23, 715 (1998).
    [CrossRef]
  5. S. R. Bolton, R. A. Jenks, C. N. Elkinton, and G. Sucha, J. Opt. Soc. Am. B 16, 339 (1999).
    [CrossRef]
  6. J.-H. Lin, M.-D. Wei, W.-F. Hsieh, and H.-H. Wu, J. Opt. Soc. Am. B 18, 1069 (2001).
    [CrossRef]
  7. H. Liu, J. Nees, and G. Mourou, Opt. Lett. 26, 1723(2001).
    [CrossRef]
  8. A. A. Lagatsky, A. R. Sarmani, C. T. A. Brown, W. Sibbett, V. E. Kisel, A. G. Selivanov, I. A. Denisov, A. E. Troshin, K. V. Yumashev, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, Opt. Lett. 30, 3234 (2005).
    [CrossRef]
  9. G. Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, and K. Ueda, Opt. Lett. 32, 2741 (2007).
    [CrossRef]
  10. S. Uemura and K. Torizuka, Appl. Phys. Express 1, 012007 (2008).
    [CrossRef]
  11. H. C. Liang, R. C. C. Chen, Y. J. Huang, K. W. Su, and Y. F. Chen, Opt. Express 16, 21149 (2008).
    [CrossRef]
  12. Y. F. Chen, H. C. Liang, J. C. Tung, K. W. Su, Y. Y. Zhang, H. J. Zhang, H. H. Yu, and J. Y. Wang, Opt. Lett. 37, 461 (2012).
    [CrossRef]
  13. H. C. Liang, Y. J. Huang, W. C. Huang, K. W. Su, and Y. F. Chen, Opt. Lett. 35, 4 (2010).
    [CrossRef]
  14. Y. F. Chen, Y. C. Lee, H. C. Liang, K. Y. Lin, K. W. Su, and K. F. Huang, Opt. Lett. 36, 4581 (2011).
    [CrossRef]
  15. J. Chilla, Q.-Z. Shu, H. Zhou, E. Weiss, M. Reed, and L. Spinelli, Proc. SPIE 6451, 645109 (2007).
    [CrossRef]
  16. D. H. Auston, IEEE J. Quantum Electron. 4, 420 (1968).
    [CrossRef]
  17. P. L. Smith, Proc. IEEE 58, 1342 (1970).
    [CrossRef]
  18. J. L. A. Chilla, H. Zhou, E. Weiss, A. L. Caprara, Q. Shou, S. V. Govorkov, M. K. Reed, and L. Spinelli, Proc. SPIE 5740, 41 (2005).
    [CrossRef]
  19. A. E. Siegman, Lasers (University Science Books, 1986), p. 1041.

2012 (1)

2011 (1)

2010 (1)

2008 (2)

2007 (2)

J. Chilla, Q.-Z. Shu, H. Zhou, E. Weiss, M. Reed, and L. Spinelli, Proc. SPIE 6451, 645109 (2007).
[CrossRef]

G. Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, and K. Ueda, Opt. Lett. 32, 2741 (2007).
[CrossRef]

2005 (2)

2001 (2)

1999 (1)

1998 (1)

1994 (1)

1993 (1)

1991 (1)

1970 (1)

P. L. Smith, Proc. IEEE 58, 1342 (1970).
[CrossRef]

1968 (1)

D. H. Auston, IEEE J. Quantum Electron. 4, 420 (1968).
[CrossRef]

Auston, D. H.

D. H. Auston, IEEE J. Quantum Electron. 4, 420 (1968).
[CrossRef]

Bolton, S. R.

Brown, C. T. A.

Caprara, A. L.

J. L. A. Chilla, H. Zhou, E. Weiss, A. L. Caprara, Q. Shou, S. V. Govorkov, M. K. Reed, and L. Spinelli, Proc. SPIE 5740, 41 (2005).
[CrossRef]

Cerullo, G.

Chen, R. C. C.

Chen, Y. F.

Chilla, J.

J. Chilla, Q.-Z. Shu, H. Zhou, E. Weiss, M. Reed, and L. Spinelli, Proc. SPIE 6451, 645109 (2007).
[CrossRef]

Chilla, J. L. A.

J. L. A. Chilla, H. Zhou, E. Weiss, A. L. Caprara, Q. Shou, S. V. Govorkov, M. K. Reed, and L. Spinelli, Proc. SPIE 5740, 41 (2005).
[CrossRef]

J. L. A. Chilla and O. E. Martinez, J. Opt. Soc. Am. B 10, 638 (1993).
[CrossRef]

Cote, D.

De Silvestri, S.

Denisov, I. A.

Elkinton, C. N.

Govorkov, S. V.

J. L. A. Chilla, H. Zhou, E. Weiss, A. L. Caprara, Q. Shou, S. V. Govorkov, M. K. Reed, and L. Spinelli, Proc. SPIE 5740, 41 (2005).
[CrossRef]

Hsieh, W.-F.

Huang, K. F.

Huang, W. C.

Huang, Y. J.

Jenks, R. A.

Kean, P. N.

Kisel, V. E.

Kuleshov, N. V.

Kupchenko, M. I.

Lagatsky, A. A.

Lee, Y. C.

Liang, H. C.

Lin, J.-H.

Lin, K. Y.

Liu, H.

Magni, V.

Martinez, O. E.

Matrosov, V. N.

Matrosova, T. A.

Mourou, G.

Nees, J.

Pallaro, L.

Qian, L. J.

Reed, M.

J. Chilla, Q.-Z. Shu, H. Zhou, E. Weiss, M. Reed, and L. Spinelli, Proc. SPIE 6451, 645109 (2007).
[CrossRef]

Reed, M. K.

J. L. A. Chilla, H. Zhou, E. Weiss, A. L. Caprara, Q. Shou, S. V. Govorkov, M. K. Reed, and L. Spinelli, Proc. SPIE 5740, 41 (2005).
[CrossRef]

Sarmani, A. R.

Selivanov, A. G.

Shou, Q.

J. L. A. Chilla, H. Zhou, E. Weiss, A. L. Caprara, Q. Shou, S. V. Govorkov, M. K. Reed, and L. Spinelli, Proc. SPIE 5740, 41 (2005).
[CrossRef]

Shu, Q.-Z.

J. Chilla, Q.-Z. Shu, H. Zhou, E. Weiss, M. Reed, and L. Spinelli, Proc. SPIE 6451, 645109 (2007).
[CrossRef]

Sibbett, W.

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986), p. 1041.

Smith, P. L.

P. L. Smith, Proc. IEEE 58, 1342 (1970).
[CrossRef]

Spence, D. E.

Spinelli, L.

J. Chilla, Q.-Z. Shu, H. Zhou, E. Weiss, M. Reed, and L. Spinelli, Proc. SPIE 6451, 645109 (2007).
[CrossRef]

J. L. A. Chilla, H. Zhou, E. Weiss, A. L. Caprara, Q. Shou, S. V. Govorkov, M. K. Reed, and L. Spinelli, Proc. SPIE 5740, 41 (2005).
[CrossRef]

Su, K. W.

Sucha, G.

Tang, D. Y.

Torizuka, K.

S. Uemura and K. Torizuka, Appl. Phys. Express 1, 012007 (2008).
[CrossRef]

Troshin, A. E.

Tung, J. C.

Ueda, K.

Uemura, S.

S. Uemura and K. Torizuka, Appl. Phys. Express 1, 012007 (2008).
[CrossRef]

van Driel, H. M.

Wang, J. Y.

Wei, M.-D.

Weiss, E.

J. Chilla, Q.-Z. Shu, H. Zhou, E. Weiss, M. Reed, and L. Spinelli, Proc. SPIE 6451, 645109 (2007).
[CrossRef]

J. L. A. Chilla, H. Zhou, E. Weiss, A. L. Caprara, Q. Shou, S. V. Govorkov, M. K. Reed, and L. Spinelli, Proc. SPIE 5740, 41 (2005).
[CrossRef]

Wu, H.-H.

Xie, G. Q.

Yu, H. H.

Yumashev, K. V.

Zhang, H. J.

Zhang, Y. Y.

Zhao, L. M.

Zhou, H.

J. Chilla, Q.-Z. Shu, H. Zhou, E. Weiss, M. Reed, and L. Spinelli, Proc. SPIE 6451, 645109 (2007).
[CrossRef]

J. L. A. Chilla, H. Zhou, E. Weiss, A. L. Caprara, Q. Shou, S. V. Govorkov, M. K. Reed, and L. Spinelli, Proc. SPIE 5740, 41 (2005).
[CrossRef]

Appl. Phys. Express (1)

S. Uemura and K. Torizuka, Appl. Phys. Express 1, 012007 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. H. Auston, IEEE J. Quantum Electron. 4, 420 (1968).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Express (1)

Opt. Lett. (9)

Proc. IEEE (1)

P. L. Smith, Proc. IEEE 58, 1342 (1970).
[CrossRef]

Proc. SPIE (2)

J. L. A. Chilla, H. Zhou, E. Weiss, A. L. Caprara, Q. Shou, S. V. Govorkov, M. K. Reed, and L. Spinelli, Proc. SPIE 5740, 41 (2005).
[CrossRef]

J. Chilla, Q.-Z. Shu, H. Zhou, E. Weiss, M. Reed, and L. Spinelli, Proc. SPIE 6451, 645109 (2007).
[CrossRef]

Other (1)

A. E. Siegman, Lasers (University Science Books, 1986), p. 1041.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Cavity configuration of the OPSL system.

Fig. 2.
Fig. 2.

(a) Output power versus current curve for the OPSL system. (b) FWHM spectral width versus the pump current.

Fig. 3.
Fig. 3.

(a) Experimental mode pattern at a distance of 300 mm from the OC. (b) Numerical mode pattern.

Fig. 4.
Fig. 4.

(a)–(c) Typical results of the temporal traces obtained at the pump current of 12.0 A for three positions corresponding to the labels 1–3 shown in Fig. 3(a), respectively. (d)–(f) Numerically reconstructed pulse trains.

Fig. 5.
Fig. 5.

(a) FWHM of the pulse duration in the autocorrelation trace for the central position as a function of the pump current. (b) Typical autocorrelation trace obtained at a pump current of 16 A.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Φn,m,l(x,y,z,t)=ψn,m(HG)(x,y,z,t)eilΩztz
ψn,m(HG)(x,y,z,t)=2ωx(z)ωy(z)ψn(x˜,ϕx)ψm(y˜,ϕy),
ψn(ξ,ϑ)=(2nn!·π)1/2eξ2/2Hn(ξ)ei(n+1/2)ϑ,
tz=tzc[1+x22(z2+zRx2)+y22(z2+zRy2)],
Ψn,m,N(x,y,z,t)=1Nl=lolo+NΦn,m,l(x,y,z,t),
E(x,y,z,t)=s=02as[Ψs,0,N(x,y,z,t)+Ψ0,s,N(x,y,z,t)],

Metrics