Abstract

We show theoretically that the fiber-optic devices using single-multi-single mode fiber structures can be made temperature insensitive by properly adjusting the concentration of P2O5 in the core region of the multimode fiber used. Taking an example of a parabolic index multimode fiber, we obtain the temperature-insensitive transmission spectrum and fiber-optic lens action for a core composition of 1.57 mol. % P2O5 and 13.5 mol. % GeO2 in the SiO2 host.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
    [CrossRef]
  2. Y. O. Ylmaz, A. Mehta, W. S. Mohammed, and E. G. Johnson, Opt. Lett. 32, 3170 (2007).
    [CrossRef]
  3. W. S. Mohammed, P. W. E. Smith, and X. Gu, Opt. Lett. 31, 2547 (2006).
    [CrossRef]
  4. J. Lopez, A. Guzman, D. Arrioja, R. Aguilar, and P. Wa, Opt. Lett. 35, 324 (2010).
    [CrossRef]
  5. S. M. Tripathi, A. Kumar, E. Marin, and J.-P. Meunier, J. Lightwave Technol. 28, 3535 (2010).
    [CrossRef]
  6. D. M. Mackie and A. W. Lee, Appl. Opt. 43, 6609(2004).
    [CrossRef]
  7. W. S. Mohammed, A. Mehta, and E. G. Johnson, J. Lightwave Technol. 22, 469 (2004).
    [CrossRef]
  8. E. Li, X. Wang, and C. Zhang, Appl. Phys. Lett. 89, 091119 (2006).
    [CrossRef]
  9. S. M. Tripathi, A. Kumar, E. Marin, and J. P. Meunier, J. Lightwave Technol. 27, 2348 (2009).
  10. S. M. Tripathi, A. Kumar, E. Marin, and J. P. Meunier, IEEE Photon. Technol. Lett. 22, 799 (2010).
    [CrossRef]
  11. E. Li, Opt. Lett. 32, 2064 (2007).
    [CrossRef]
  12. B. Dong, D.-P. Zhou, L. Wei, W.-K. Liu, and J. W. Y. Lit, Opt. Express 16, 19291 (2008).
    [CrossRef]
  13. B. Dong, D.-P. Zhou, L. Wei, W.-K. Liu, and J. W. Y. Lit, J. Lightwave Technol. 28, 1011 (2010).
    [CrossRef]
  14. B. Dong and E. J. Hao, J. Opt. Soc. Am. 28, 2332(2011).
  15. A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge Univ., 1998).
  16. D. Marcuse, J. Opt. Soc. Am. 68, 103 (1978).
    [CrossRef]
  17. P. Sheng, Phys. Rev. Lett. 45, 60 (1980).
    [CrossRef]
  18. Y. Morishita and K. Tanaka, J. Appl. Phys. 93, 999(2003).
    [CrossRef]
  19. H. Ticha, J. Schwarz, L. Ticha, and R. Mertens, J. Optoelectron Adv. Mater. 6, 747 (2004).
  20. J. W. Fleming, Electron. Lett. 14, 326 (1978).
    [CrossRef]
  21. J. W. Fleming, J. Am. Ceram. Soc. 59, 503 (1976).
    [CrossRef]
  22. M. J. Adams, An Introduction to Optical Waveguides(Wiley, 1981).

2011 (1)

B. Dong and E. J. Hao, J. Opt. Soc. Am. 28, 2332(2011).

2010 (4)

2009 (1)

2008 (1)

2007 (2)

2006 (2)

W. S. Mohammed, P. W. E. Smith, and X. Gu, Opt. Lett. 31, 2547 (2006).
[CrossRef]

E. Li, X. Wang, and C. Zhang, Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

2004 (3)

2003 (1)

Y. Morishita and K. Tanaka, J. Appl. Phys. 93, 999(2003).
[CrossRef]

1995 (1)

L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
[CrossRef]

1980 (1)

P. Sheng, Phys. Rev. Lett. 45, 60 (1980).
[CrossRef]

1978 (2)

J. W. Fleming, Electron. Lett. 14, 326 (1978).
[CrossRef]

D. Marcuse, J. Opt. Soc. Am. 68, 103 (1978).
[CrossRef]

1976 (1)

J. W. Fleming, J. Am. Ceram. Soc. 59, 503 (1976).
[CrossRef]

Adams, M. J.

M. J. Adams, An Introduction to Optical Waveguides(Wiley, 1981).

Aguilar, R.

Arrioja, D.

Dong, B.

Fleming, J. W.

J. W. Fleming, Electron. Lett. 14, 326 (1978).
[CrossRef]

J. W. Fleming, J. Am. Ceram. Soc. 59, 503 (1976).
[CrossRef]

Ghatak, A. K.

A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge Univ., 1998).

Gu, X.

Guzman, A.

Hao, E. J.

B. Dong and E. J. Hao, J. Opt. Soc. Am. 28, 2332(2011).

Johnson, E. G.

Kumar, A.

Lee, A. W.

Li, E.

E. Li, Opt. Lett. 32, 2064 (2007).
[CrossRef]

E. Li, X. Wang, and C. Zhang, Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

Lit, J. W. Y.

Liu, W.-K.

Lopez, J.

Mackie, D. M.

Marcuse, D.

Marin, E.

Mehta, A.

Mertens, R.

H. Ticha, J. Schwarz, L. Ticha, and R. Mertens, J. Optoelectron Adv. Mater. 6, 747 (2004).

Meunier, J. P.

S. M. Tripathi, A. Kumar, E. Marin, and J. P. Meunier, IEEE Photon. Technol. Lett. 22, 799 (2010).
[CrossRef]

S. M. Tripathi, A. Kumar, E. Marin, and J. P. Meunier, J. Lightwave Technol. 27, 2348 (2009).

Meunier, J.-P.

Mohammed, W. S.

Morishita, Y.

Y. Morishita and K. Tanaka, J. Appl. Phys. 93, 999(2003).
[CrossRef]

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
[CrossRef]

Schwarz, J.

H. Ticha, J. Schwarz, L. Ticha, and R. Mertens, J. Optoelectron Adv. Mater. 6, 747 (2004).

Sheng, P.

P. Sheng, Phys. Rev. Lett. 45, 60 (1980).
[CrossRef]

Smith, P. W. E.

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995).
[CrossRef]

Tanaka, K.

Y. Morishita and K. Tanaka, J. Appl. Phys. 93, 999(2003).
[CrossRef]

Thyagarajan, K.

A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge Univ., 1998).

Ticha, H.

H. Ticha, J. Schwarz, L. Ticha, and R. Mertens, J. Optoelectron Adv. Mater. 6, 747 (2004).

Ticha, L.

H. Ticha, J. Schwarz, L. Ticha, and R. Mertens, J. Optoelectron Adv. Mater. 6, 747 (2004).

Tripathi, S. M.

Wa, P.

Wang, X.

E. Li, X. Wang, and C. Zhang, Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

Wei, L.

Ylmaz, Y. O.

Zhang, C.

E. Li, X. Wang, and C. Zhang, Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

Zhou, D.-P.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. Li, X. Wang, and C. Zhang, Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

Electron. Lett. (1)

J. W. Fleming, Electron. Lett. 14, 326 (1978).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. M. Tripathi, A. Kumar, E. Marin, and J. P. Meunier, IEEE Photon. Technol. Lett. 22, 799 (2010).
[CrossRef]

J. Am. Ceram. Soc. (1)

J. W. Fleming, J. Am. Ceram. Soc. 59, 503 (1976).
[CrossRef]

J. Appl. Phys. (1)

Y. Morishita and K. Tanaka, J. Appl. Phys. 93, 999(2003).
[CrossRef]

J. Lightwave Technol. (5)

J. Opt. Soc. Am. (2)

D. Marcuse, J. Opt. Soc. Am. 68, 103 (1978).
[CrossRef]

B. Dong and E. J. Hao, J. Opt. Soc. Am. 28, 2332(2011).

J. Optoelectron Adv. Mater. (1)

H. Ticha, J. Schwarz, L. Ticha, and R. Mertens, J. Optoelectron Adv. Mater. 6, 747 (2004).

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

P. Sheng, Phys. Rev. Lett. 45, 60 (1980).
[CrossRef]

Other (2)

A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge Univ., 1998).

M. J. Adams, An Introduction to Optical Waveguides(Wiley, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Transmission spectra of the SMS structure using MMF core with (a) 0, (b) 1.47, (c) 1.57, and (d) 1.67 mol. % P2O5 codoped with 13.5 mol. % GeO2 in SiO2 host.

Fig. 2.
Fig. 2.

(a) Optical field pattern inside and outside the parabolic core MMF for 1.57 mol. % doping of P2O5. (b) Intensity pattern at the exit of MMF showing lens action in air for (i) ΔT=0°C and (ii) ΔT=50°C for 0 doping of P2O5; (iii) ΔT=0°C and (iv) ΔT=50°C for 1.57 mol. % doping of P2O5.

Tables (1)

Tables Icon

Table 1. Physical Parameters of Binary Glasses

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Po=|0Ψs*ΨM(L)rdr02πdθ|2=|mηm2ei(β1βm)L|2.
βm=k0n0[12(2m1)αmk02n02]1/2
ψm(r)=2π1wMLm1(2r2wM2)er2/wM2.
ηm=0Ψsψm*rdr0|ψm|2rdr=2μ1+μ2(1μ21+μ2)m
mϵmϵtϵm+2ϵtvm=0,

Metrics