Abstract

Simultaneous measurements of refractive index (RI) and temperature are proposed and experimentally demonstrated by using a tapered bend-resistant fiber interferometer. Different phase shifts of an inner and outer cladding mode of the fiber interferometer are measured to determine the temperature compensated RI of a glycerol solution. The temperature coefficients of the inner and outer cladding modes are 0.0253rad/°C and 0.0523rad/°C, and the RI coefficients are 4.0403rad/RIU and 44.823rad/RIU, respectively. The minimum errors of temperature and RI are 0.6°C and 0.001 RIU, respectively.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. L. Zhao, X. Yang, M. S. Demokan, and W. Jin, J. Lightwave Technol. 24, 879 (2006).
    [CrossRef]
  2. P. Lu, L. Men, K. Sooley, and Q. Chen, Appl. Phys. Lett. 94, 131110 (2009).
    [CrossRef]
  3. O. Frazão, T. Martynkien, J. M. Baptista, J. L. Santos, W. Urbanczyk, and J. Wojcik, Opt. Lett. 34, 76 (2009).
    [CrossRef]
  4. R. Yang, Y. S. Yu, C. Chen, Q. D. Chen, and H. B. Sun, Opt. Lett. 36, 3879 (2011).
    [CrossRef]
  5. D. J. J. Hu, J. L. Lim, M. Jiang, Y. Wang, F. Luan, P. P. Shum, H. Wei, and W. Tong, Opt. Lett. 37, 2283 (2012).
    [CrossRef]
  6. K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and I. Sankawa, IEEE Photon. Technol. Lett. 15, 1737 (2003).
    [CrossRef]
  7. P. R. Watekar, S. Ju, Y. S. Yoon, Y. S. Lee, and W. T. Han, Opt. Express 16, 13545 (2008).
    [CrossRef]
  8. M. J. Li, P. Tandon, D. C. Bookbinder, S. R. Bickham, M. A. McDermott, R. B. Desorcie, D. A. Nolan, J. J. Johnson, K. A. Lewis, and J. J. Englebert, J. Lightwave Technol. 27, 376 (2009).
    [CrossRef]
  9. H. Y. Choi, M. J. Kim, and B. H. Lee, Opt. Express 15, 5711 (2007).
    [CrossRef]
  10. D. R. Lide, ed., Handbook of Chemistry and Physics, 87th ed. (CRC, 2007).
  11. J. D. C. Jones, in Optical Fiber Sensors, OSA Technical Digest Series (Optical Society of America, 1997), Vol. 16, p. 36.

2012

2011

2009

2008

2007

2006

2003

K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and I. Sankawa, IEEE Photon. Technol. Lett. 15, 1737 (2003).
[CrossRef]

Baptista, J. M.

Bickham, S. R.

Bookbinder, D. C.

Chen, C.

Chen, Q.

P. Lu, L. Men, K. Sooley, and Q. Chen, Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

Chen, Q. D.

Choi, H. Y.

Demokan, M. S.

Desorcie, R. B.

Englebert, J. J.

Frazão, O.

Han, W. T.

Hogari, K.

K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and I. Sankawa, IEEE Photon. Technol. Lett. 15, 1737 (2003).
[CrossRef]

Hu, D. J. J.

Jiang, M.

Jin, W.

Johnson, J. J.

Jones, J. D. C.

J. D. C. Jones, in Optical Fiber Sensors, OSA Technical Digest Series (Optical Society of America, 1997), Vol. 16, p. 36.

Ju, S.

Kim, M. J.

Lee, B. H.

Lee, Y. S.

Lewis, K. A.

Li, M. J.

Lim, J. L.

Lu, P.

P. Lu, L. Men, K. Sooley, and Q. Chen, Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

Luan, F.

Martynkien, T.

McDermott, M. A.

Men, L.

P. Lu, L. Men, K. Sooley, and Q. Chen, Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

Nakajima, K.

K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and I. Sankawa, IEEE Photon. Technol. Lett. 15, 1737 (2003).
[CrossRef]

Nolan, D. A.

Sankawa, I.

K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and I. Sankawa, IEEE Photon. Technol. Lett. 15, 1737 (2003).
[CrossRef]

Santos, J. L.

Shum, P. P.

Sooley, K.

P. Lu, L. Men, K. Sooley, and Q. Chen, Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

Sun, H. B.

Tajima, K.

K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and I. Sankawa, IEEE Photon. Technol. Lett. 15, 1737 (2003).
[CrossRef]

Tandon, P.

Tong, W.

Urbanczyk, W.

Wang, Y.

Watekar, P. R.

Wei, H.

Wojcik, J.

Yang, R.

Yang, X.

Yoon, Y. S.

Yu, Y. S.

Zhao, C. L.

Zhou, J.

K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and I. Sankawa, IEEE Photon. Technol. Lett. 15, 1737 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic illustration of the tapered bend-resistant fiber interferometer. The left and right insets show optical micrographs of the two abrupt tapers and the middle inset shows a schematic drawing of the bend-resistant fiber cross section.

Fig. 2.
Fig. 2.

Transmission spectrum of the tapered bend-resistant fiber interferometer.

Fig. 3.
Fig. 3.

Spatial frequency spectrum of the tapered bend-resistant fiber interferometer of (a) an intensity spectrum and (b) a phase spectrum. Inset of (a) shows the simulated optical field patterns of the LP core mode, the LP in mode, and the LP out mode.

Fig. 4.
Fig. 4.

Shift in the transmission spectrum of the tapered bend-resistant fiber interferometer with a change in (a) ambient temperature and (b) external RI.

Fig. 5.
Fig. 5.

Phase shifts at the spatial frequencies of the LP in and LP out modes with a change in (a) ambient temperature and (b) external RI.

Fig. 6.
Fig. 6.

Phase as a function of (a) ambient temperature and (b) external RI at different spatial frequencies.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

δ Φ = 2 π ξ δ λ ,
[ δ Φ in δ Φ out ] = M RI , T [ Δ T Δ RI ] = [ C in T C in RI C out T C out RI ] [ Δ T Δ RI ] ,
δ T = | C in RI | δ Φ in + | C out RI | δ Φ out | C in T C out RI C in RI C out T | δ ε = | C in T | δ Φ in + | C out T | δ Φ out | C in T C out RI C in RI C out T | .

Metrics