Abstract

We numerically report the submicrometer radius (0.5 μm) and high confinement (mode area λ2/1200) plasmonic ring resonators for both all-pass and add-drop filters based on the hybrid metal-oxide-semiconductor (Ag-SiO2-Si) waveguide platform. The best tradeoff between the propagation length and the confinement of this hybrid plasmonic waveguide platform is also discussed and compared to the dielectric-loaded plasmonic waveguide counterpart. We show that the ring resonator all-pass filter features an extinction ratio as high as 23 dB with a transmission loss of 1.5 dB, and a wide free spectral range of 168 nm with a bandwidth of 14 nm. Moreover, the demonstrated add-drop filter achieves an extinction ratio larger than 12 dB with a channel isolation between the through and drop channels of 13.5 dB at the resonant wavelength. These demonstrated plasmonic devices reveal as potential building blocks for future nanoscale electronic-photonic integrated circuits.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ozbay, Science 311, 189 (2006).
    [CrossRef]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photonics 4, 83 (2010).
    [CrossRef]
  3. V. S. Volkov, Z. Hua, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, Opt. Lett. 36, 4278 (2011).
    [CrossRef]
  4. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496 (2008).
    [CrossRef]
  5. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, Opt. Express 18, 12971 (2010).
    [CrossRef]
  6. H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, Appl. Phys. Lett. 96, 221103 (2010).
    [CrossRef]
  7. J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Akerman, L. Tong, and M. Qiu, Appl. Phys. Lett. 97, 231121 (2010).
    [CrossRef]
  8. V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, Nat. Commun. 2, 331 (2011).
    [CrossRef]
  9. R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, Nat. Mater. 10, 110 (2010).
    [CrossRef]
  10. Yu. A. Akimov and H.-S. Chu, “Plasmon–plasmon interaction: controlling light at nanoscale,” Nanotechnology (to be published).
  11. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
    [CrossRef]
  12. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, Laser Photon. Rev. 6, 47(2012).
    [CrossRef]
  13. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
    [CrossRef]
  14. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, Opt. Express 17, 2968 (2009).
    [CrossRef]
  15. R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, Nano Lett. 10, 4851 (2010).
    [CrossRef]
  16. D. Perron, M. Wu, C. Horvath, D. Bachman, and V. Van, Opt. Lett. 36, 2731 (2011).
    [CrossRef]
  17. H.-S. Chu, Yu. Akimov, Ping Bai, and E.-P. Li, J. Opt. Soc. Am. B 28, 2895 (2011).
    [CrossRef]
  18. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, Opt. Lett. 29, 1209 (2004).
    [CrossRef]
  19. R. Mote, H.-S. Chu, Ping Bai, and E.-P. Li, Opt. Commun. 285, 3709 (2012).
    [CrossRef]
  20. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  21. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

2012 (2)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, Laser Photon. Rev. 6, 47(2012).
[CrossRef]

R. Mote, H.-S. Chu, Ping Bai, and E.-P. Li, Opt. Commun. 285, 3709 (2012).
[CrossRef]

2011 (4)

2010 (6)

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, Nat. Mater. 10, 110 (2010).
[CrossRef]

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, Opt. Express 18, 12971 (2010).
[CrossRef]

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, Appl. Phys. Lett. 96, 221103 (2010).
[CrossRef]

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Akerman, L. Tong, and M. Qiu, Appl. Phys. Lett. 97, 231121 (2010).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photonics 4, 83 (2010).
[CrossRef]

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, Nano Lett. 10, 4851 (2010).
[CrossRef]

2009 (1)

2008 (1)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496 (2008).
[CrossRef]

2006 (2)

E. Ozbay, Science 311, 189 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef]

2005 (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
[CrossRef]

2004 (1)

1972 (1)

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Aitchison, J. S.

Akerman, J.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Akerman, L. Tong, and M. Qiu, Appl. Phys. Lett. 97, 231121 (2010).
[CrossRef]

Akimov, Yu.

Akimov, Yu. A.

Yu. A. Akimov and H.-S. Chu, “Plasmon–plasmon interaction: controlling light at nanoscale,” Nanotechnology (to be published).

Alam, M. Z.

Albrektsen, O.

Almeida, V. R.

Atwater, H. A.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, Nano Lett. 10, 4851 (2010).
[CrossRef]

Bachman, D.

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, Laser Photon. Rev. 6, 47(2012).
[CrossRef]

Bai, P.

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, Appl. Phys. Lett. 96, 221103 (2010).
[CrossRef]

Bai, Ping

R. Mote, H.-S. Chu, Ping Bai, and E.-P. Li, Opt. Commun. 285, 3709 (2012).
[CrossRef]

H.-S. Chu, Yu. Akimov, Ping Bai, and E.-P. Li, J. Opt. Soc. Am. B 28, 2895 (2011).
[CrossRef]

Barrios, C. A.

Bartal, G.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, Nat. Commun. 2, 331 (2011).
[CrossRef]

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, Nat. Mater. 10, 110 (2010).
[CrossRef]

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, Laser Photon. Rev. 6, 47(2012).
[CrossRef]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, Laser Photon. Rev. 6, 47(2012).
[CrossRef]

Bozhevolnyi, S. I.

Briggs, R. M.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, Nano Lett. 10, 4851 (2010).
[CrossRef]

Burgos, S. P.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, Nano Lett. 10, 4851 (2010).
[CrossRef]

Chen, Z.

Christy, R. W.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Chu, H.-S.

R. Mote, H.-S. Chu, Ping Bai, and E.-P. Li, Opt. Commun. 285, 3709 (2012).
[CrossRef]

H.-S. Chu, Yu. Akimov, Ping Bai, and E.-P. Li, J. Opt. Soc. Am. B 28, 2895 (2011).
[CrossRef]

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, Appl. Phys. Lett. 96, 221103 (2010).
[CrossRef]

Yu. A. Akimov and H.-S. Chu, “Plasmon–plasmon interaction: controlling light at nanoscale,” Nanotechnology (to be published).

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, Laser Photon. Rev. 6, 47(2012).
[CrossRef]

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, Laser Photon. Rev. 6, 47(2012).
[CrossRef]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, Laser Photon. Rev. 6, 47(2012).
[CrossRef]

Dereux, A.

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef]

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, Laser Photon. Rev. 6, 47(2012).
[CrossRef]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef]

Feigenbaum, E.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, Nano Lett. 10, 4851 (2010).
[CrossRef]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496 (2008).
[CrossRef]

Gosciniak, J.

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photonics 4, 83 (2010).
[CrossRef]

Grandidier, J.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, Nano Lett. 10, 4851 (2010).
[CrossRef]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Hegde, R.

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, Appl. Phys. Lett. 96, 221103 (2010).
[CrossRef]

Holmgaard, T.

Horvath, C.

Hua, Z.

Johnson, P. B.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Keshmiri, H.

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, Laser Photon. Rev. 6, 47(2012).
[CrossRef]

Laluet, J.-Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef]

Leosson, K.

Li, E.-P.

R. Mote, H.-S. Chu, Ping Bai, and E.-P. Li, Opt. Commun. 285, 3709 (2012).
[CrossRef]

H.-S. Chu, Yu. Akimov, Ping Bai, and E.-P. Li, J. Opt. Soc. Am. B 28, 2895 (2011).
[CrossRef]

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, Appl. Phys. Lett. 96, 221103 (2010).
[CrossRef]

Li, Q.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Akerman, L. Tong, and M. Qiu, Appl. Phys. Lett. 97, 231121 (2010).
[CrossRef]

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
[CrossRef]

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, Opt. Lett. 29, 1209 (2004).
[CrossRef]

Liu, Z.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Akerman, L. Tong, and M. Qiu, Appl. Phys. Lett. 97, 231121 (2010).
[CrossRef]

Ma, R. M.

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, Nat. Mater. 10, 110 (2010).
[CrossRef]

Ma, Z.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Akerman, L. Tong, and M. Qiu, Appl. Phys. Lett. 97, 231121 (2010).
[CrossRef]

Markey, L.

Meier, J.

Mojahedi, M.

Mote, R.

R. Mote, H.-S. Chu, Ping Bai, and E.-P. Li, Opt. Commun. 285, 3709 (2012).
[CrossRef]

Nielsen, M. G.

Oulton, R. F.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, Nat. Commun. 2, 331 (2011).
[CrossRef]

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, Nat. Mater. 10, 110 (2010).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496 (2008).
[CrossRef]

Ozbay, E.

E. Ozbay, Science 311, 189 (2006).
[CrossRef]

Perron, D.

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496 (2008).
[CrossRef]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
[CrossRef]

Qiu, M.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Akerman, L. Tong, and M. Qiu, Appl. Phys. Lett. 97, 231121 (2010).
[CrossRef]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
[CrossRef]

Song, Y.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Akerman, L. Tong, and M. Qiu, Appl. Phys. Lett. 97, 231121 (2010).
[CrossRef]

Sorger, V. J.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, Nat. Commun. 2, 331 (2011).
[CrossRef]

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, Nat. Mater. 10, 110 (2010).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496 (2008).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Tian, J.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Akerman, L. Tong, and M. Qiu, Appl. Phys. Lett. 97, 231121 (2010).
[CrossRef]

Tong, L.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Akerman, L. Tong, and M. Qiu, Appl. Phys. Lett. 97, 231121 (2010).
[CrossRef]

Van, V.

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, Laser Photon. Rev. 6, 47(2012).
[CrossRef]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, Laser Photon. Rev. 6, 47(2012).
[CrossRef]

Volkov, V. S.

Wang, Y.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, Nat. Commun. 2, 331 (2011).
[CrossRef]

Wu, M.

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
[CrossRef]

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, Opt. Lett. 29, 1209 (2004).
[CrossRef]

Yang, Q.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Akerman, L. Tong, and M. Qiu, Appl. Phys. Lett. 97, 231121 (2010).
[CrossRef]

Ye, Z.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, Nat. Commun. 2, 331 (2011).
[CrossRef]

Yin, X.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, Nat. Commun. 2, 331 (2011).
[CrossRef]

Zha, C.

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Akerman, L. Tong, and M. Qiu, Appl. Phys. Lett. 97, 231121 (2010).
[CrossRef]

Zhang, X.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, Nat. Commun. 2, 331 (2011).
[CrossRef]

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, Nat. Mater. 10, 110 (2010).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496 (2008).
[CrossRef]

Appl. Phys. Lett. (2)

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, Appl. Phys. Lett. 96, 221103 (2010).
[CrossRef]

J. Tian, Z. Ma, Q. Li, Y. Song, Z. Liu, Q. Yang, C. Zha, J. Akerman, L. Tong, and M. Qiu, Appl. Phys. Lett. 97, 231121 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, Laser Photon. Rev. 6, 47(2012).
[CrossRef]

Nano Lett. (1)

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, Nano Lett. 10, 4851 (2010).
[CrossRef]

Nat. Commun. (1)

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, Nat. Commun. 2, 331 (2011).
[CrossRef]

Nat. Mater. (1)

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, Nat. Mater. 10, 110 (2010).
[CrossRef]

Nat. Photonics (2)

D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photonics 4, 83 (2010).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photonics 2, 496 (2008).
[CrossRef]

Nature (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
[CrossRef]

Opt. Commun. (1)

R. Mote, H.-S. Chu, Ping Bai, and E.-P. Li, Opt. Commun. 285, 3709 (2012).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Science (1)

E. Ozbay, Science 311, 189 (2006).
[CrossRef]

Other (2)

Yu. A. Akimov and H.-S. Chu, “Plasmon–plasmon interaction: controlling light at nanoscale,” Nanotechnology (to be published).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Schematic of the highly confined Si-based hybrid dielectric-loaded plasmonic waveguide (Si-HDPW). (b) Propagation length and the normalized intensity confinement as a function of the active square nanowire dimension, calculated for the Si-HDPW, Si- and SiO2-based dielectric-loaded plasmonic waveguide (Si-DLPW and SiO2-DLPW) respectively. The results show that the Si-HDPW achieves best tradeoff between the propagation length and the intensity confinement than others. (c) Comparison of the electric-field (in the dB scale) of the Si-HDPW and Si-DLPW for the Si-nanowire size of w=200nm. The E-field is mostly squeezed in a 10 nm SiO2-layer of Si-HDPW, in contrast to Si-DLPW; the E-field extends in an area larger than Si-nanowire area.

Fig. 2.
Fig. 2.

(a) Power transmission as a function of wavelengths of the hybrid dielectric-loaded plasmonic ring resonator all-pass filter in respect to the optimal gap of g=200nm. The inset shows the geometry and dimension of the filter. (b) Distribution of the dominant component Re(Ez) in the middle of SiO2-layer located 5 nm above the silver film for two different operating wavelengths of λ=1.6μm (off-resonance) and λ=1.564μm (on-resonance). (c) Optimal bandwidth of the ring resonators as a function of their ring radii in respect to two different thicknesses of the SiO2-layer (tSiO2=10 and 50 nm).

Fig. 3.
Fig. 3.

(a) Free-view of the hybrid dielectric-loaded waveguide-based add-drop filter. (b) Power transmission of the through and drop channels as a function of wavelengths in respect to the optimal gap g=150nm, R=0.5μm, wSi=200nm and tSiO2=10nm. The inset shows the field-intensity |E|2 for two different output channels (through and drop) for the resonant (λ=1.558μm) and non-resonant (λ=1.54μm) wavelengths.

Metrics