Abstract

We propose and demonstrate an all-chalcogenide microwire Raman laser, the first to our knowledge. The gain medium is provided by the Raman effect in a chalcogenide microwire and two Fabry–Perot resonant media are tested for lasing: (1) a cavity made out of a Fresnel reflection at one end of the microwire and a silver coated, broadband mirror at the other end, and (2) a cavity made out of Fresnel reflections at both ends of the microwire. The microwires are pumped in the C-band, and the resulting Raman lasers operate in the L-band. Such an all-chalcogenide microwire laser has the potential to operate over the entire transmission window of chalcogenide glasses, i.e., in the wavelength range of 1.5–10 μm.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Stolen, Fiber Integr. Opt. 3, 21 (1980).
    [CrossRef]
  2. E. M. Dianov and A. M. Prokhorov, IEEE J. Sel. Top. Quantum Electron. 6, 1022 (2000).
    [CrossRef]
  3. S. A. Skubchenko, M. Y. Vyatkin, and D. V. Gapontsev, IEEE Photon. Technol. Lett. 16, 1014 (2004).
    [CrossRef]
  4. J. C. Travers, S. V. Popov, and J. R. Taylor, Appl. Phys. Lett. 87, 031106 (2005).
    [CrossRef]
  5. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, J. Opt. Soc. Am. B 21, 1146 (2004).
    [CrossRef]
  6. P. Dumais, F. Gonthier, S. Lacroix, J. Bures, A. Villeneuve, P. Wigley, and G. Stegeman, Opt. Lett. 18, 1996 (1993).
    [CrossRef]
  7. V. S. Afshar, W. Q. Zhang, H. E. Heidepriem, and T. M. Monro, Opt. Lett. 34, 3577 (2009).
    [CrossRef]
  8. E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. Lamont, D. I. Yeom, and B. J. Eggleton, Opt. Express 15, 10324 (2007).
    [CrossRef]
  9. C. Baker and M. Rochette, Opt. Express 18, 12391 (2010).
    [CrossRef]
  10. O. Boyraz and B. Jalali, Opt. Express 12, 5269 (2004).
    [CrossRef]
  11. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, Nature 433, 292 (2005).
    [CrossRef]
  12. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
    [CrossRef]
  13. R. Ahmad and M. Rochette, Appl. Phys. Lett. 101, 101110 (2012).
    [CrossRef]
  14. S. D. Jackson and G. Anzueto-Sánchez, Appl. Phys. Lett. 88, 221106 (2006).
    [CrossRef]
  15. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  16. See, for example, http://www.evaporatedcoatings.com/mirror-coatings .

2012

R. Ahmad and M. Rochette, Appl. Phys. Lett. 101, 101110 (2012).
[CrossRef]

2010

2009

2007

2006

S. D. Jackson and G. Anzueto-Sánchez, Appl. Phys. Lett. 88, 221106 (2006).
[CrossRef]

2005

J. C. Travers, S. V. Popov, and J. R. Taylor, Appl. Phys. Lett. 87, 031106 (2005).
[CrossRef]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, Nature 433, 292 (2005).
[CrossRef]

2004

2001

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
[CrossRef]

2000

E. M. Dianov and A. M. Prokhorov, IEEE J. Sel. Top. Quantum Electron. 6, 1022 (2000).
[CrossRef]

1993

1980

R. H. Stolen, Fiber Integr. Opt. 3, 21 (1980).
[CrossRef]

Afshar, V. S.

Aggarwal, I. D.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Ahmad, R.

R. Ahmad and M. Rochette, Appl. Phys. Lett. 101, 101110 (2012).
[CrossRef]

Anzueto-Sánchez, G.

S. D. Jackson and G. Anzueto-Sánchez, Appl. Phys. Lett. 88, 221106 (2006).
[CrossRef]

Baker, C.

Boyraz, O.

Bures, J.

Cohen, O.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, Nature 433, 292 (2005).
[CrossRef]

Dianov, E. M.

E. M. Dianov and A. M. Prokhorov, IEEE J. Sel. Top. Quantum Electron. 6, 1022 (2000).
[CrossRef]

Dumais, P.

Eggleton, B. J.

Fang, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, Nature 433, 292 (2005).
[CrossRef]

Feick, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
[CrossRef]

Fu, L. B.

Gapontsev, D. V.

S. A. Skubchenko, M. Y. Vyatkin, and D. V. Gapontsev, IEEE Photon. Technol. Lett. 16, 1014 (2004).
[CrossRef]

Gonthier, F.

Hak, D.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, Nature 433, 292 (2005).
[CrossRef]

Heidepriem, H. E.

Hodelin, J.

Huang, M. H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
[CrossRef]

Jackson, S. D.

S. D. Jackson and G. Anzueto-Sánchez, Appl. Phys. Lett. 88, 221106 (2006).
[CrossRef]

Jalali, B.

Jones, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, Nature 433, 292 (2005).
[CrossRef]

Kind, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
[CrossRef]

Lacroix, S.

Lamont, M. R.

Lenz, G.

Liu, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, Nature 433, 292 (2005).
[CrossRef]

Mägi, E. C.

Mao, S.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
[CrossRef]

Monro, T. M.

Nguyen, H. C.

Nicolaescu, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, Nature 433, 292 (2005).
[CrossRef]

Paniccia, M.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, Nature 433, 292 (2005).
[CrossRef]

Popov, S. V.

J. C. Travers, S. V. Popov, and J. R. Taylor, Appl. Phys. Lett. 87, 031106 (2005).
[CrossRef]

Prokhorov, A. M.

E. M. Dianov and A. M. Prokhorov, IEEE J. Sel. Top. Quantum Electron. 6, 1022 (2000).
[CrossRef]

Rochette, M.

R. Ahmad and M. Rochette, Appl. Phys. Lett. 101, 101110 (2012).
[CrossRef]

C. Baker and M. Rochette, Opt. Express 18, 12391 (2010).
[CrossRef]

Rong, H.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, Nature 433, 292 (2005).
[CrossRef]

Russo, R.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
[CrossRef]

Sanghera, J.

Shaw, L. B.

Skubchenko, S. A.

S. A. Skubchenko, M. Y. Vyatkin, and D. V. Gapontsev, IEEE Photon. Technol. Lett. 16, 1014 (2004).
[CrossRef]

Slusher, R. E.

Stegeman, G.

Stolen, R. H.

R. H. Stolen, Fiber Integr. Opt. 3, 21 (1980).
[CrossRef]

Taylor, J. R.

J. C. Travers, S. V. Popov, and J. R. Taylor, Appl. Phys. Lett. 87, 031106 (2005).
[CrossRef]

Travers, J. C.

J. C. Travers, S. V. Popov, and J. R. Taylor, Appl. Phys. Lett. 87, 031106 (2005).
[CrossRef]

Villeneuve, A.

Vyatkin, M. Y.

S. A. Skubchenko, M. Y. Vyatkin, and D. V. Gapontsev, IEEE Photon. Technol. Lett. 16, 1014 (2004).
[CrossRef]

Weber, E.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
[CrossRef]

Wigley, P.

Wu, Y.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
[CrossRef]

Yan, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
[CrossRef]

Yang, P.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
[CrossRef]

Yeom, D. I.

Zhang, W. Q.

Appl. Phys. Lett.

J. C. Travers, S. V. Popov, and J. R. Taylor, Appl. Phys. Lett. 87, 031106 (2005).
[CrossRef]

R. Ahmad and M. Rochette, Appl. Phys. Lett. 101, 101110 (2012).
[CrossRef]

S. D. Jackson and G. Anzueto-Sánchez, Appl. Phys. Lett. 88, 221106 (2006).
[CrossRef]

Fiber Integr. Opt.

R. H. Stolen, Fiber Integr. Opt. 3, 21 (1980).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

E. M. Dianov and A. M. Prokhorov, IEEE J. Sel. Top. Quantum Electron. 6, 1022 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

S. A. Skubchenko, M. Y. Vyatkin, and D. V. Gapontsev, IEEE Photon. Technol. Lett. 16, 1014 (2004).
[CrossRef]

J. Opt. Soc. Am. B

Nature

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, Nature 433, 292 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Science

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
[CrossRef]

Other

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

See, for example, http://www.evaporatedcoatings.com/mirror-coatings .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup of the As2Se3 Raman laser. CW laser, CW fiber-coupled laser; PCx, polarization controller x; Mod, Mach–Zehnder modulators; EDFA, erbium-doped fiber amplifier; BPF, optical bandpass filter; CIR, optical circulator; OSA, optical spectrum analyzer.

Fig. 2.
Fig. 2.

(a) Output spectra of the Raman laser for increasing values of input peak pump power. (b) Stokes Raman laser average power as a function of input average pump power.

Fig. 3.
Fig. 3.

Laser output spectrum over a wide spectral range.

Fig. 4.
Fig. 4.

Output spectrum of the Raman laser with two cascaded gain sections surrounded by Fresnel reflectors.

Metrics