Abstract

We propose a new concept of a fiber laser architecture supporting self-similar pulse evolution in the amplifier and nonlinear spectral pulse compression in the passive fiber. The latter process allows for transform-limited picosecond pulse generation, and improves the laser’s power efficiency by preventing strong spectral filtering from being highly dissipative. Aside from laser technology, the proposed scheme opens new possibilities for studying nonlinear dynamical processes. As an example, we demonstrate a clear period-doubling route to chaos in such a nonlinear laser system.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Renninger, A. Chong, and F. W. Wise, IEEE J. Sel. Top. Quantum Electron. 18, 389 (2012).
    [CrossRef]
  2. B. Oktem, C. Ülgüdür, and F. Ö. Ilday, Nat. Photonics 4, 307 (2010).
    [CrossRef]
  3. W. H. Renninger, A. Chong, and F. W. Wise, Phys. Rev. A 82, 021805 (2010).
    [CrossRef]
  4. B. G. Bale and S. Wabnitz, Opt. Lett. 35, 2466 (2010).
    [CrossRef]
  5. C. Aguergaray, D. M’echin, V. Kruglov, and J. D. Harvey, Opt. Express 18, 8680 (2010).
    [CrossRef]
  6. A. Chong, H. Liu, B. Nie, B. G. Bale, S. Wabnitz, W. H. Renninger, M. Dantus, and F. W. Wise, Opt. Express 20, 14213 (2012).
    [CrossRef]
  7. W. H. Renninger, A. Chong, and F. W. Wise, Opt. Express 19, 22496 (2011).
    [CrossRef]
  8. S. A. Planas, N. L. Pires Mansur, C. H. Brito Cruz, and H. L. Fragnito, Opt. Lett. 18, 699 (1993).
    [CrossRef]
  9. L. Feng, P. K. A. Wai, and J. N. Kutz, J. Opt. Soc. Am. B 27, 2068 (2010).
    [CrossRef]

2012 (2)

2011 (1)

2010 (5)

1993 (1)

Aguergaray, C.

Bale, B. G.

Brito Cruz, C. H.

Chong, A.

A. Chong, H. Liu, B. Nie, B. G. Bale, S. Wabnitz, W. H. Renninger, M. Dantus, and F. W. Wise, Opt. Express 20, 14213 (2012).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, IEEE J. Sel. Top. Quantum Electron. 18, 389 (2012).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, Opt. Express 19, 22496 (2011).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, Phys. Rev. A 82, 021805 (2010).
[CrossRef]

Dantus, M.

Feng, L.

Fragnito, H. L.

Harvey, J. D.

Ilday, F. Ö.

B. Oktem, C. Ülgüdür, and F. Ö. Ilday, Nat. Photonics 4, 307 (2010).
[CrossRef]

Kruglov, V.

Kutz, J. N.

Liu, H.

M’echin, D.

Nie, B.

Oktem, B.

B. Oktem, C. Ülgüdür, and F. Ö. Ilday, Nat. Photonics 4, 307 (2010).
[CrossRef]

Pires Mansur, N. L.

Planas, S. A.

Renninger, W. H.

A. Chong, H. Liu, B. Nie, B. G. Bale, S. Wabnitz, W. H. Renninger, M. Dantus, and F. W. Wise, Opt. Express 20, 14213 (2012).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, IEEE J. Sel. Top. Quantum Electron. 18, 389 (2012).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, Opt. Express 19, 22496 (2011).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, Phys. Rev. A 82, 021805 (2010).
[CrossRef]

Ülgüdür, C.

B. Oktem, C. Ülgüdür, and F. Ö. Ilday, Nat. Photonics 4, 307 (2010).
[CrossRef]

Wabnitz, S.

Wai, P. K. A.

Wise, F. W.

A. Chong, H. Liu, B. Nie, B. G. Bale, S. Wabnitz, W. H. Renninger, M. Dantus, and F. W. Wise, Opt. Express 20, 14213 (2012).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, IEEE J. Sel. Top. Quantum Electron. 18, 389 (2012).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, Opt. Express 19, 22496 (2011).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, Phys. Rev. A 82, 021805 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the laser.

Fig. 2.
Fig. 2.

Phase diagram representing the combined evolution of the rms temporal and spectral widths of the pulse over one roundtrip in the cavity (a) with and (b) without nonlinear spectral compression. The locations in the cavity indicated in Fig. 1 are shown. Evolution of the pulse spectral profile along the cavity (c) with and (d) without nonlinear spectral compression.

Fig. 3.
Fig. 3.

Temporal intensity and chirp profiles (left) and spectral intensity profiles (right) of the pulse at (a) the entrance (location 1 in Fig. 1; dotted) and the exit (location 2; solid) of the gain fiber, and (b) the entrance of the passive fiber (location 5; solid black), the end of the passive fiber (location 6; dotted black), and after the narrow spectral filter (solid grey).

Fig. 4.
Fig. 4.

One-dimensional Poincaré map: pulse energy at the output port 2 (Fig. 1) versus length of the passive fiber segment.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ψz=iβ22ψtt+iγ|ψ|2ψ+12g(ψ+1Ω2ψtt),

Metrics