Abstract

An erbium doped fiber ring laser achieving soliton mode locking by the use of an intra-cavity all-fiber polarization interference filter (AFPIF) has been demonstrated. To incorporate an AFPIF with relative narrow transmission bandwidth, the laser has produced clean soliton pulses of 1.2 ps duration at a repetition rate of 14.98 MHz with a polarization extinction ratio up to 25.7 dB. Moreover, we have demonstrated that the operating wavelength of the mode locking laser can be tuned over 20 nm range from 1545 to 1565 nm by thermally tuning the AFPIF cavity.

© 2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sub-100-fs 1.87  GHz mode-locked fiber laser using stretched-soliton effects

W. He, M. Pang, C. R. Menyuk, and P. St. J. Russell
Optica 3(12) 1366-1372 (2016)

L-band wavelength-tunable dissipative soliton fiber laser

Dan Yan, Xingliang Li, Shumin Zhang, Mengmeng Han, Huiyun Han, and Zhenjun Yang
Opt. Express 24(2) 739-748 (2016)

Passively harmonic mode locked erbium doped fiber soliton laser with carbon nanotubes based saturable absorber

Chengbo Mou, Raz Arif, Aleksey Rozhin, and Sergei Turitsyn
Opt. Mater. Express 2(6) 884-890 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription