Abstract

A physical-enhanced secure passive optical network (PON) based on chaos synchronization is proposed and numerically demonstrated. In this scheme, the chaotic output of an external-cavity semiconductor laser is used as the transmission carrier in both downstream and upstream directions, the chaos modulation technology is used to encrypt the downstream data, and the multiplexed subcarrier-modulation technology is adopted for the upstream transmission. Simulation results demonstrate that both the downstream data and the upstream data encrypted into the chaotic carriers can be successfully decrypted; moreover, the security of downstream can be enhanced by properly increasing the bit rate, and the upstream security can be maintained at a high level. The proposed PON affords secure all-optical access at the physical layer.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Wong, J. Lightwave Technol. 30, 597 (2012).
    [CrossRef]
  2. C. W. Chow, C. H. Yeh, C. H. Wang, C. L. Wu, S. Chi, and C. L. Lin, IEEE J. Sel. Areas Commun. 28, 800 (2010).
    [CrossRef]
  3. C. H. Kim, J. H. Lee, and K. Lee, Opt. Express 15, 14942 (2007).
    [CrossRef]
  4. C. F. Zhang, J. Huang, C. Chen, and K. Qiu, Opt. Express 19, 24816 (2011).
    [CrossRef]
  5. L. J. Zhang, X. J. Xin, B. Liu, and J. J. Yu, Opt. Express 20, 2255 (2012).
    [CrossRef]
  6. R. Vicente, C. R. Mirasso, and I. Fischer, Opt. Lett. 32, 403 (2007).
    [CrossRef]
  7. V. Annovazzi-Lodi, G. Aromataris, M. Benedetti, and S. Merlo, IEEE J. Quantum Electron. 46, 258 (2010).
    [CrossRef]
  8. N. Jiang, W. Pan, B. Luo, L. S. Yan, S. Y. Xiang, L. Yang, and D. Zheng, Opt. Lett. 36, 3197 (2011).
    [CrossRef]
  9. A. Argyris, D. Syvrids, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, Nature 437, 343 (2005).
    [CrossRef]
  10. A. Argyris, E. Grivas, A. Bogris, and D. Syvridis, J. Lightwave Technol. 28, 3107 (2010).
    [CrossRef]
  11. D. Kanakidis, A. Bogris, A. Argyris, and D. Syvridis, J. Lightwave Technol. 22, 2256 (2004).
    [CrossRef]
  12. F. Zhang and P. L. Chu, J. Lightwave Technol. 21, 3334 (2003).
    [CrossRef]
  13. A. Bogris, A. Argyris, and D. Syvridis, IEEE J. Quantum Electron. 46, 1421 (2010).
    [CrossRef]

2012 (2)

2011 (2)

2010 (4)

C. W. Chow, C. H. Yeh, C. H. Wang, C. L. Wu, S. Chi, and C. L. Lin, IEEE J. Sel. Areas Commun. 28, 800 (2010).
[CrossRef]

V. Annovazzi-Lodi, G. Aromataris, M. Benedetti, and S. Merlo, IEEE J. Quantum Electron. 46, 258 (2010).
[CrossRef]

A. Bogris, A. Argyris, and D. Syvridis, IEEE J. Quantum Electron. 46, 1421 (2010).
[CrossRef]

A. Argyris, E. Grivas, A. Bogris, and D. Syvridis, J. Lightwave Technol. 28, 3107 (2010).
[CrossRef]

2007 (2)

2005 (1)

A. Argyris, D. Syvrids, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, Nature 437, 343 (2005).
[CrossRef]

2004 (1)

2003 (1)

Annovazzi-Lodi, V.

V. Annovazzi-Lodi, G. Aromataris, M. Benedetti, and S. Merlo, IEEE J. Quantum Electron. 46, 258 (2010).
[CrossRef]

A. Argyris, D. Syvrids, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, Nature 437, 343 (2005).
[CrossRef]

Argyris, A.

A. Bogris, A. Argyris, and D. Syvridis, IEEE J. Quantum Electron. 46, 1421 (2010).
[CrossRef]

A. Argyris, E. Grivas, A. Bogris, and D. Syvridis, J. Lightwave Technol. 28, 3107 (2010).
[CrossRef]

A. Argyris, D. Syvrids, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, Nature 437, 343 (2005).
[CrossRef]

D. Kanakidis, A. Bogris, A. Argyris, and D. Syvridis, J. Lightwave Technol. 22, 2256 (2004).
[CrossRef]

Aromataris, G.

V. Annovazzi-Lodi, G. Aromataris, M. Benedetti, and S. Merlo, IEEE J. Quantum Electron. 46, 258 (2010).
[CrossRef]

Benedetti, M.

V. Annovazzi-Lodi, G. Aromataris, M. Benedetti, and S. Merlo, IEEE J. Quantum Electron. 46, 258 (2010).
[CrossRef]

Bogris, A.

Chen, C.

Chi, S.

C. W. Chow, C. H. Yeh, C. H. Wang, C. L. Wu, S. Chi, and C. L. Lin, IEEE J. Sel. Areas Commun. 28, 800 (2010).
[CrossRef]

Chow, C. W.

C. W. Chow, C. H. Yeh, C. H. Wang, C. L. Wu, S. Chi, and C. L. Lin, IEEE J. Sel. Areas Commun. 28, 800 (2010).
[CrossRef]

Chu, P. L.

Colet, P.

A. Argyris, D. Syvrids, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, Nature 437, 343 (2005).
[CrossRef]

Fischer, I.

R. Vicente, C. R. Mirasso, and I. Fischer, Opt. Lett. 32, 403 (2007).
[CrossRef]

A. Argyris, D. Syvrids, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, Nature 437, 343 (2005).
[CrossRef]

Garcia-Ojalvo, J.

A. Argyris, D. Syvrids, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, Nature 437, 343 (2005).
[CrossRef]

Grivas, E.

Huang, J.

Jiang, N.

Kanakidis, D.

Kim, C. H.

Larger, L.

A. Argyris, D. Syvrids, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, Nature 437, 343 (2005).
[CrossRef]

Lee, J. H.

Lee, K.

Lin, C. L.

C. W. Chow, C. H. Yeh, C. H. Wang, C. L. Wu, S. Chi, and C. L. Lin, IEEE J. Sel. Areas Commun. 28, 800 (2010).
[CrossRef]

Liu, B.

Luo, B.

Merlo, S.

V. Annovazzi-Lodi, G. Aromataris, M. Benedetti, and S. Merlo, IEEE J. Quantum Electron. 46, 258 (2010).
[CrossRef]

Mirasso, C. R.

R. Vicente, C. R. Mirasso, and I. Fischer, Opt. Lett. 32, 403 (2007).
[CrossRef]

A. Argyris, D. Syvrids, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, Nature 437, 343 (2005).
[CrossRef]

Pan, W.

Pesquera, L.

A. Argyris, D. Syvrids, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, Nature 437, 343 (2005).
[CrossRef]

Qiu, K.

Shore, K. A.

A. Argyris, D. Syvrids, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, Nature 437, 343 (2005).
[CrossRef]

Syvridis, D.

Syvrids, D.

A. Argyris, D. Syvrids, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, Nature 437, 343 (2005).
[CrossRef]

Vicente, R.

Wang, C. H.

C. W. Chow, C. H. Yeh, C. H. Wang, C. L. Wu, S. Chi, and C. L. Lin, IEEE J. Sel. Areas Commun. 28, 800 (2010).
[CrossRef]

Wong, E.

Wu, C. L.

C. W. Chow, C. H. Yeh, C. H. Wang, C. L. Wu, S. Chi, and C. L. Lin, IEEE J. Sel. Areas Commun. 28, 800 (2010).
[CrossRef]

Xiang, S. Y.

Xin, X. J.

Yan, L. S.

Yang, L.

Yeh, C. H.

C. W. Chow, C. H. Yeh, C. H. Wang, C. L. Wu, S. Chi, and C. L. Lin, IEEE J. Sel. Areas Commun. 28, 800 (2010).
[CrossRef]

Yu, J. J.

Zhang, C. F.

Zhang, F.

Zhang, L. J.

Zheng, D.

IEEE J. Quantum Electron. (2)

V. Annovazzi-Lodi, G. Aromataris, M. Benedetti, and S. Merlo, IEEE J. Quantum Electron. 46, 258 (2010).
[CrossRef]

A. Bogris, A. Argyris, and D. Syvridis, IEEE J. Quantum Electron. 46, 1421 (2010).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

C. W. Chow, C. H. Yeh, C. H. Wang, C. L. Wu, S. Chi, and C. L. Lin, IEEE J. Sel. Areas Commun. 28, 800 (2010).
[CrossRef]

J. Lightwave Technol. (4)

Nature (1)

A. Argyris, D. Syvrids, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, Nature 437, 343 (2005).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the physical-enhanced secure PON. TX, transmitter; RX, receiver; OC, optical coupler; PD, photodiode; IPD, inverse photodiode; OI, optical isolator; PC, polarization controller; MOD, optical modulator; LPF, low-pass filter; DL, delay line; PS, power splitter; EA, electrical amplifier.

Fig. 2.
Fig. 2.

Temporal intensity series of (a) output of TL, (b) chaotic carrier outputting from downlink, and (c) output of RL1 (that for RL2 is similar), and the corresponding cross correlations between any two of them.

Fig. 3.
Fig. 3.

Communication processes in the proposed PON. (a), (b), and (c) denote the original data at OLT, ONU1, and ONU2, while (d), (e), and (f) are the corresponding recovery data.

Fig. 4.
Fig. 4.

Performance (BER) for the downstream transmission (circle) and upstream transmissions from ONU1 (triangle) and ONU2 (square), as well as the BER for the intercepted messages filtered from the downlink (dot), versus the data bit rate. The dashed triangle and square curves, respectively, denote the BERs for the upstream from ONU1 and ONU2, when the upstream modulation index is doubled (0.14). The insets (a) and (b), respectively, show the data intercepted from the downlink and uplink by direct linear filtering. The subcarriers are identical to those of Fig. 3.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E˙T,Rn(t)=(1+iβ)(GT,Rn(t)γp)ET,Rn(t)+kT,RnET,Rn(tτ)exp(iω0τ)+σT,REiT(t)+2RspNT,Rn(t)χT,Rn,
N˙T,Rn(t)=I/qγeNT,Rn(t)GT,Rn(t)ET,Rn(t)2.
G(t)=g[N(t)N0]/(1+sE(t)2).
iEz=i2αEγ|E|2E+12β22Et2+i6β33Et3,

Metrics