Abstract

A directional, in-fiber optofluidic magnetometer based on a microstructured optical fiber (MOF) Bragg-grating infiltrated with a ferrofluidic defect is presented. Upon application of a magnetic field, the ferrofluidic defect moves along the length of the MOF Bragg grating, modifying its reflection spectrum. The magnetometer is capable of measuring magnetic fields from 317 to 2500 G. The operational principle of such in-fiber magnetic field probe allows the elaboration of directional measurements of the magnetic field flux.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, S. R. Quake, and C. Yang, Nature 442, 381 (2006).
    [CrossRef]
  2. C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photonics 1, 106 (2007).
    [CrossRef]
  3. M. Vieweg, S. Pricking, T. Gissibl, Y. Kartashov, L. Torner, and H. Giessen, Opt. Lett. 37, 1058 (2012).
    [CrossRef]
  4. C. Markos, K. Vlachos, and G. Kakarantzas, Opt. Mater. Express 2, 929 (2012).
    [CrossRef]
  5. A. E. Vasdekis, G. E. Town, G. A. Turnbull, and I. D. W. Samuel, Opt. Express 15, 3962 (2007).
    [CrossRef]
  6. A. A. Kayani, K. Khoshmanesh, S. A. Ward, A. Mitchell, and K. Kalantar-zadeh, Biomicrofluidics 6, 031501 (2012).
    [CrossRef]
  7. P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, IEEE Photon. Technol. Lett. 12, 495 (2000).
    [CrossRef]
  8. A. Candiani, M. Konstantaki, W. Margulis, and S. Pissadakis, Opt. Express 18, 24654 (2010).
    [CrossRef]
  9. A. Candiani, W. Margulis, C. Sterner, M. Konstantaki, and S. Pissadakis, Opt. Lett. 36, 2548 (2011).
    [CrossRef]
  10. G. N. Smith, T. Allsop, K. Kalli, C. Koutsides, R. Neal, K. Sugden, P. Culverhouse, and I. Bennion, Opt. Express 19, 363 (2011).
    [CrossRef]
  11. J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, Electron. Lett. 33, 235 (1997).
    [CrossRef]
  12. L. Palmieri and A. Galtarossa, J. Lightwave Technol. 29, 3178 (2011).
    [CrossRef]
  13. H. Ji, S. Pu, X. Wang, and G. Yu, Appl. Opt. 51, 1010 (2012).
    [CrossRef]
  14. H. V. Thakur, S. M. Nalawade, S. Gupta, R. Kitture, and S. N. Kale, Appl. Phys. Lett. 99, 161101 (2011).
    [CrossRef]
  15. A. Candiani, A. Argyros, R. Lwin, S. G. Leon-Saval, G. Zito, S. Selleri, and S. Pissadakis, Microstructured and Specialty Optical Fibres (SPIE, 2012), 84260E–84266.
  16. C. Yamahata, M. Chastellain, V. K. Parashar, A. Petri, H. Hofmann, and M. A. M. Gijs, IEEE/ASME J. Microelectromech Syst. 14, 96 (2005).
    [CrossRef]
  17. M. S. Amin, S. Elborai, S.-H. Lee, X. He, and M. Zahn, J. Appl. Phys. 97, 10R308 (2005).
    [CrossRef]
  18. S. Odenbach, Magnetoviscous Effects in Ferrofluids (Springer, 2002).
  19. C. Rinaldi, A. Chaves, S. Elborai, X. He, and M. Zahn, Interface Sci. 10, 141 (2005).

2012

2011

2010

2007

2006

D. Psaltis, S. R. Quake, and C. Yang, Nature 442, 381 (2006).
[CrossRef]

2005

C. Yamahata, M. Chastellain, V. K. Parashar, A. Petri, H. Hofmann, and M. A. M. Gijs, IEEE/ASME J. Microelectromech Syst. 14, 96 (2005).
[CrossRef]

M. S. Amin, S. Elborai, S.-H. Lee, X. He, and M. Zahn, J. Appl. Phys. 97, 10R308 (2005).
[CrossRef]

C. Rinaldi, A. Chaves, S. Elborai, X. He, and M. Zahn, Interface Sci. 10, 141 (2005).

2000

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, IEEE Photon. Technol. Lett. 12, 495 (2000).
[CrossRef]

1997

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, Electron. Lett. 33, 235 (1997).
[CrossRef]

Allsop, T.

Amin, M. S.

M. S. Amin, S. Elborai, S.-H. Lee, X. He, and M. Zahn, J. Appl. Phys. 97, 10R308 (2005).
[CrossRef]

Andres, M. V.

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, Electron. Lett. 33, 235 (1997).
[CrossRef]

Argyros, A.

A. Candiani, A. Argyros, R. Lwin, S. G. Leon-Saval, G. Zito, S. Selleri, and S. Pissadakis, Microstructured and Specialty Optical Fibres (SPIE, 2012), 84260E–84266.

Bennion, I.

Burdge, G. L.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, IEEE Photon. Technol. Lett. 12, 495 (2000).
[CrossRef]

Candiani, A.

A. Candiani, W. Margulis, C. Sterner, M. Konstantaki, and S. Pissadakis, Opt. Lett. 36, 2548 (2011).
[CrossRef]

A. Candiani, M. Konstantaki, W. Margulis, and S. Pissadakis, Opt. Express 18, 24654 (2010).
[CrossRef]

A. Candiani, A. Argyros, R. Lwin, S. G. Leon-Saval, G. Zito, S. Selleri, and S. Pissadakis, Microstructured and Specialty Optical Fibres (SPIE, 2012), 84260E–84266.

Chastellain, M.

C. Yamahata, M. Chastellain, V. K. Parashar, A. Petri, H. Hofmann, and M. A. M. Gijs, IEEE/ASME J. Microelectromech Syst. 14, 96 (2005).
[CrossRef]

Chaves, A.

C. Rinaldi, A. Chaves, S. Elborai, X. He, and M. Zahn, Interface Sci. 10, 141 (2005).

Cruz, J. L.

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, Electron. Lett. 33, 235 (1997).
[CrossRef]

Culverhouse, P.

Diez, A.

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, Electron. Lett. 33, 235 (1997).
[CrossRef]

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photonics 1, 106 (2007).
[CrossRef]

Dong, L.

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, Electron. Lett. 33, 235 (1997).
[CrossRef]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photonics 1, 106 (2007).
[CrossRef]

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, IEEE Photon. Technol. Lett. 12, 495 (2000).
[CrossRef]

Elborai, S.

C. Rinaldi, A. Chaves, S. Elborai, X. He, and M. Zahn, Interface Sci. 10, 141 (2005).

M. S. Amin, S. Elborai, S.-H. Lee, X. He, and M. Zahn, J. Appl. Phys. 97, 10R308 (2005).
[CrossRef]

Galtarossa, A.

Giessen, H.

Gijs, M. A. M.

C. Yamahata, M. Chastellain, V. K. Parashar, A. Petri, H. Hofmann, and M. A. M. Gijs, IEEE/ASME J. Microelectromech Syst. 14, 96 (2005).
[CrossRef]

Gissibl, T.

Gupta, S.

H. V. Thakur, S. M. Nalawade, S. Gupta, R. Kitture, and S. N. Kale, Appl. Phys. Lett. 99, 161101 (2011).
[CrossRef]

Hale, A.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, IEEE Photon. Technol. Lett. 12, 495 (2000).
[CrossRef]

He, X.

M. S. Amin, S. Elborai, S.-H. Lee, X. He, and M. Zahn, J. Appl. Phys. 97, 10R308 (2005).
[CrossRef]

C. Rinaldi, A. Chaves, S. Elborai, X. He, and M. Zahn, Interface Sci. 10, 141 (2005).

Hofmann, H.

C. Yamahata, M. Chastellain, V. K. Parashar, A. Petri, H. Hofmann, and M. A. M. Gijs, IEEE/ASME J. Microelectromech Syst. 14, 96 (2005).
[CrossRef]

Ji, H.

Kakarantzas, G.

Kalantar-zadeh, K.

A. A. Kayani, K. Khoshmanesh, S. A. Ward, A. Mitchell, and K. Kalantar-zadeh, Biomicrofluidics 6, 031501 (2012).
[CrossRef]

Kale, S. N.

H. V. Thakur, S. M. Nalawade, S. Gupta, R. Kitture, and S. N. Kale, Appl. Phys. Lett. 99, 161101 (2011).
[CrossRef]

Kalli, K.

Kartashov, Y.

Kayani, A. A.

A. A. Kayani, K. Khoshmanesh, S. A. Ward, A. Mitchell, and K. Kalantar-zadeh, Biomicrofluidics 6, 031501 (2012).
[CrossRef]

Khoshmanesh, K.

A. A. Kayani, K. Khoshmanesh, S. A. Ward, A. Mitchell, and K. Kalantar-zadeh, Biomicrofluidics 6, 031501 (2012).
[CrossRef]

Kitture, R.

H. V. Thakur, S. M. Nalawade, S. Gupta, R. Kitture, and S. N. Kale, Appl. Phys. Lett. 99, 161101 (2011).
[CrossRef]

Konstantaki, M.

Koutsides, C.

Lee, S.-H.

M. S. Amin, S. Elborai, S.-H. Lee, X. He, and M. Zahn, J. Appl. Phys. 97, 10R308 (2005).
[CrossRef]

Leon-Saval, S. G.

A. Candiani, A. Argyros, R. Lwin, S. G. Leon-Saval, G. Zito, S. Selleri, and S. Pissadakis, Microstructured and Specialty Optical Fibres (SPIE, 2012), 84260E–84266.

Lwin, R.

A. Candiani, A. Argyros, R. Lwin, S. G. Leon-Saval, G. Zito, S. Selleri, and S. Pissadakis, Microstructured and Specialty Optical Fibres (SPIE, 2012), 84260E–84266.

Margulis, W.

Markos, C.

Mitchell, A.

A. A. Kayani, K. Khoshmanesh, S. A. Ward, A. Mitchell, and K. Kalantar-zadeh, Biomicrofluidics 6, 031501 (2012).
[CrossRef]

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photonics 1, 106 (2007).
[CrossRef]

Nalawade, S. M.

H. V. Thakur, S. M. Nalawade, S. Gupta, R. Kitture, and S. N. Kale, Appl. Phys. Lett. 99, 161101 (2011).
[CrossRef]

Neal, R.

Odenbach, S.

S. Odenbach, Magnetoviscous Effects in Ferrofluids (Springer, 2002).

Ortega, B.

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, Electron. Lett. 33, 235 (1997).
[CrossRef]

Palmieri, L.

Parashar, V. K.

C. Yamahata, M. Chastellain, V. K. Parashar, A. Petri, H. Hofmann, and M. A. M. Gijs, IEEE/ASME J. Microelectromech Syst. 14, 96 (2005).
[CrossRef]

Petri, A.

C. Yamahata, M. Chastellain, V. K. Parashar, A. Petri, H. Hofmann, and M. A. M. Gijs, IEEE/ASME J. Microelectromech Syst. 14, 96 (2005).
[CrossRef]

Pissadakis, S.

A. Candiani, W. Margulis, C. Sterner, M. Konstantaki, and S. Pissadakis, Opt. Lett. 36, 2548 (2011).
[CrossRef]

A. Candiani, M. Konstantaki, W. Margulis, and S. Pissadakis, Opt. Express 18, 24654 (2010).
[CrossRef]

A. Candiani, A. Argyros, R. Lwin, S. G. Leon-Saval, G. Zito, S. Selleri, and S. Pissadakis, Microstructured and Specialty Optical Fibres (SPIE, 2012), 84260E–84266.

Pricking, S.

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, Nature 442, 381 (2006).
[CrossRef]

Pu, S.

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, Nature 442, 381 (2006).
[CrossRef]

Rinaldi, C.

C. Rinaldi, A. Chaves, S. Elborai, X. He, and M. Zahn, Interface Sci. 10, 141 (2005).

Samuel, I. D. W.

Segura, A.

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, Electron. Lett. 33, 235 (1997).
[CrossRef]

Selleri, S.

A. Candiani, A. Argyros, R. Lwin, S. G. Leon-Saval, G. Zito, S. Selleri, and S. Pissadakis, Microstructured and Specialty Optical Fibres (SPIE, 2012), 84260E–84266.

Smith, G. N.

Sterner, C.

Strasser, T. A.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, IEEE Photon. Technol. Lett. 12, 495 (2000).
[CrossRef]

Sugden, K.

Thakur, H. V.

H. V. Thakur, S. M. Nalawade, S. Gupta, R. Kitture, and S. N. Kale, Appl. Phys. Lett. 99, 161101 (2011).
[CrossRef]

Torner, L.

Town, G. E.

Turnbull, G. A.

Vasdekis, A. E.

Vieweg, M.

Vlachos, K.

Wang, X.

Ward, S. A.

A. A. Kayani, K. Khoshmanesh, S. A. Ward, A. Mitchell, and K. Kalantar-zadeh, Biomicrofluidics 6, 031501 (2012).
[CrossRef]

Westbrook, P. S.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, IEEE Photon. Technol. Lett. 12, 495 (2000).
[CrossRef]

Windeler, R. S.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, IEEE Photon. Technol. Lett. 12, 495 (2000).
[CrossRef]

Yamahata, C.

C. Yamahata, M. Chastellain, V. K. Parashar, A. Petri, H. Hofmann, and M. A. M. Gijs, IEEE/ASME J. Microelectromech Syst. 14, 96 (2005).
[CrossRef]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, Nature 442, 381 (2006).
[CrossRef]

Yu, G.

Zahn, M.

M. S. Amin, S. Elborai, S.-H. Lee, X. He, and M. Zahn, J. Appl. Phys. 97, 10R308 (2005).
[CrossRef]

C. Rinaldi, A. Chaves, S. Elborai, X. He, and M. Zahn, Interface Sci. 10, 141 (2005).

Zito, G.

A. Candiani, A. Argyros, R. Lwin, S. G. Leon-Saval, G. Zito, S. Selleri, and S. Pissadakis, Microstructured and Specialty Optical Fibres (SPIE, 2012), 84260E–84266.

Appl. Opt.

Appl. Phys. Lett.

H. V. Thakur, S. M. Nalawade, S. Gupta, R. Kitture, and S. N. Kale, Appl. Phys. Lett. 99, 161101 (2011).
[CrossRef]

Biomicrofluidics

A. A. Kayani, K. Khoshmanesh, S. A. Ward, A. Mitchell, and K. Kalantar-zadeh, Biomicrofluidics 6, 031501 (2012).
[CrossRef]

Electron. Lett.

J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, Electron. Lett. 33, 235 (1997).
[CrossRef]

IEEE Photon. Technol. Lett.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, IEEE Photon. Technol. Lett. 12, 495 (2000).
[CrossRef]

IEEE/ASME J. Microelectromech Syst.

C. Yamahata, M. Chastellain, V. K. Parashar, A. Petri, H. Hofmann, and M. A. M. Gijs, IEEE/ASME J. Microelectromech Syst. 14, 96 (2005).
[CrossRef]

Interface Sci.

C. Rinaldi, A. Chaves, S. Elborai, X. He, and M. Zahn, Interface Sci. 10, 141 (2005).

J. Appl. Phys.

M. S. Amin, S. Elborai, S.-H. Lee, X. He, and M. Zahn, J. Appl. Phys. 97, 10R308 (2005).
[CrossRef]

J. Lightwave Technol.

Nat. Photonics

C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photonics 1, 106 (2007).
[CrossRef]

Nature

D. Psaltis, S. R. Quake, and C. Yang, Nature 442, 381 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater. Express

Other

S. Odenbach, Magnetoviscous Effects in Ferrofluids (Springer, 2002).

A. Candiani, A. Argyros, R. Lwin, S. G. Leon-Saval, G. Zito, S. Selleri, and S. Pissadakis, Microstructured and Specialty Optical Fibres (SPIE, 2012), 84260E–84266.

Supplementary Material (1)

» Media 1: MOV (2096 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the ferrofluid infiltrated MOF Bragg-grating magnetometer.

Fig. 2.
Fig. 2.

Spectral response of the ferrofluid phase defected MOF Bragg grating for two magnetic field states; notch visibility ν is defined in the spectra.

Fig. 3.
Fig. 3.

Notch visibility ν changes resulting from the movement of the ferrofluidic defect into the MOF Bragg grating versus the magnetic field applied along the fiber axis for two different ferrofluids infiltrated. Vertical lines denote the measurement sensitivity threshold for each device realized.

Fig. 4.
Fig. 4.

Visibility changes Δν (in dB units), see the curve with triangles, of the defect mode measured in reflection versus rotation angle of the magnet around the ferrofluidic defect. The dashed curve plots the cos(θ) function. The deviations of the experimental data with respect to the cos(θ) are the result of eccentricity mismatches between the magnetic field probe and the center of rotation.

Fig. 5.
Fig. 5.

Parasitic spectral notch strength variation Δν versus modulation frequency of the AC magnetic field stimulus (Media 1).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

fL=8μl/πDH,

Metrics