Abstract

We here develop a method to measure and image the full optical scattering properties by inverse spectroscopic optical coherence tomography (ISOCT). Tissue is modelled as a medium with continuous refractive index (RI) fluctuation and such a fluctuation is described by the RI correlation functions. Under the first-order Born approximation, the forward model is established for ISOCT. By measuring optical quantities of tissue including the scattering power of the OCT spectrum, the reflection albedo α defined as the ratio of scattering coefficient μs, and the backscattering coefficient μb, we are able to inversely deduce the RI correlation function and image the full set of optical scattering properties.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Cheong, S. Prahl, and A. Welch, IEEE J. Quantum Electron. 26, 2166 (1990).
    [CrossRef]
  2. T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, Appl. Opt. 44, 2072 (2005).
    [CrossRef]
  3. D. Faber, F. van der Meer, M. Aalders, and T. van Leeuwen, Opt. Express 12, 4353 (2004).
    [CrossRef]
  4. H. Ding, Z. Wang, X. Liang, S. A. Boppart, K. Tangella, and G. Popescu, Opt. Lett. 36, 2281 (2011).
    [CrossRef]
  5. J. D. Rogers, İ. R. Çapoğlu, and V. Backman, Opt. Lett. 34, 1891 (2009).
    [CrossRef]
  6. İ. R. Çapoğlu, J. D. Rogers, A. Taflove, and V. Backman, Opt. Lett. 34, 2679 (2009).
    [CrossRef]
  7. V. M. Kodach, D. J. Faber, J. van Marle, T. G. van Leeuwen, and J. Kalkman, Opt. Express 19, 6131 (2011).
    [CrossRef]
  8. N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, J. Biomed. Opt. 16, 030503 (2011).
    [CrossRef]
  9. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, Opt. Lett. 25, 820 (2000).
    [CrossRef]
  10. C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, J. Biomed. Opt. 13, 034003 (2008).
    [CrossRef]

2011 (3)

2009 (2)

2008 (1)

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, J. Biomed. Opt. 13, 034003 (2008).
[CrossRef]

2005 (1)

2004 (1)

2000 (1)

1990 (1)

W. Cheong, S. Prahl, and A. Welch, IEEE J. Quantum Electron. 26, 2166 (1990).
[CrossRef]

Aalders, M.

Aalders, M. C. G.

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, J. Biomed. Opt. 16, 030503 (2011).
[CrossRef]

Backman, V.

Boppart, S. A.

Bosschaart, N.

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, J. Biomed. Opt. 16, 030503 (2011).
[CrossRef]

Çapoglu, I. R.

Carlier, S. G.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, J. Biomed. Opt. 13, 034003 (2008).
[CrossRef]

Cheong, W.

W. Cheong, S. Prahl, and A. Welch, IEEE J. Quantum Electron. 26, 2166 (1990).
[CrossRef]

Collier, T.

Ding, H.

Faber, D.

Faber, D. J.

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, J. Biomed. Opt. 16, 030503 (2011).
[CrossRef]

V. M. Kodach, D. J. Faber, J. van Marle, T. G. van Leeuwen, and J. Kalkman, Opt. Express 19, 6131 (2011).
[CrossRef]

Fercher, A. F.

Follen, M.

Hitzenberger, C. K.

Kalkman, J.

Kodach, V. M.

Kowalczyk, A.

Leitgeb, R.

Liang, X.

Malpica, A.

Popescu, G.

Prahl, S.

W. Cheong, S. Prahl, and A. Welch, IEEE J. Quantum Electron. 26, 2166 (1990).
[CrossRef]

Richards-Kortum, R.

Rogers, J. D.

Schmitt, J. M.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, J. Biomed. Opt. 13, 034003 (2008).
[CrossRef]

Sticker, M.

Taflove, A.

Tangella, K.

van der Meer, F.

van Leeuwen, T.

van Leeuwen, T. G.

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, J. Biomed. Opt. 16, 030503 (2011).
[CrossRef]

V. M. Kodach, D. J. Faber, J. van Marle, T. G. van Leeuwen, and J. Kalkman, Opt. Express 19, 6131 (2011).
[CrossRef]

van Marle, J.

Virmani, R.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, J. Biomed. Opt. 13, 034003 (2008).
[CrossRef]

Wang, Z.

Welch, A.

W. Cheong, S. Prahl, and A. Welch, IEEE J. Quantum Electron. 26, 2166 (1990).
[CrossRef]

Wojtkowski, M.

Xu, C.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, J. Biomed. Opt. 13, 034003 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of the methodology. D is obtained from power law fitting to μb spectrum. lc is deduced by D and α according to Eq. (6).

Fig. 2.
Fig. 2.

(a) and (b) μb and μs spectrum with the sphere diameters and volume fraction (v.f.). (c) and (d) Calibration of μb and μs in various concentrations of 0.87 μm spheres. (e) D value phantom design with four types of spheres. The total spectrum is a power law within the illumination bandwidth. (f) Calibration of D. All the measurements were repeated three times. Error bar = S.E.

Fig. 3.
Fig. 3.

(a) Map of g dependence on D and lc. (b)–(d) Conventional OCT, α and g image from a rat buccal sample. (1) Keratinized epithelium, (2) stratified squamous epithelium, and (3) submucosa. Bar=50μm.

Tables (1)

Tables Icon

Table 1. Physical and Optical Properties ±S.E. of Different Rat Organs (710 nm)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Cn(ρ)=Nc·2(5D)/2(ρlc)(D3)/2K(D3)/2(ρlc),
σ(θ,ϕ)=2Nck4lc3Γ(D/2)(1sin2(θ)cos2(ϕ))π(1+[2klcsin(θ/2)]2)D/2,
μb=Nc8πΓ(D/2)k4lc3(1+[2klc]2)D/2.
μs=NcπΓ(D/23)2k2lc3[(1+(2k2lc2(D/22)1)×2k2lc2(D/23))(1+2k2lc2(D/2+1)+4k4lc4(43D/2+D2/4))(1+4k2lc2)1D/2].
μb23DNcπΓ(D/2)lc3Dk4D,(klc1)μs2NcπΓ(D/21)k2lc,(klc1&D>2);
αΓ(D/2)/Γ(D/21)(2klc)2D.
I2=rI02μb4πLexp(2znμs),

Metrics