Abstract

We propose and experimentally demonstrate a hybrid fiber optic sensing technique that effectively combines Raman optical time domain reflectometry and in-line time-division-multiplexing for fiber Bragg grating (FBG) dynamic interrogation. The highly integrated proposed scheme employs broadband apodized low reflectivity FBGs with a single narrowband optical source and a shared receiver block, allowing for simultaneous measurements of distributed static temperature and discrete dynamic strain, over the same sensing fiber.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Anscombe and O. Graydon, Nat. Photonics 2, 143 (2008).
  2. K. T. V. Grattan and T. Sun, Sens. Actuators A 82, 40 (2000).
    [CrossRef]
  3. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, and K. P. Koo, J. Lightwave Technol. 15, 1142 (1997).
    [CrossRef]
  4. J. P. Dakin and D. J. Pratt, IEEE Electron. Lett. 21, 569 (1985).
    [CrossRef]
  5. T. Nannipieri, M. Taki, F. Zaidi, A. Signorini, M. A. Soto, G. Bolognini, and F. Di Pasquale, “Hybrid BOTDA/FBG sensor for discrete dynamic and distributed static strain/temperature measurements,” presented at the 22nd International Conference on Optical Fiber Sensors (OFS-22), October 15–19, 2012, Beijing, China, paper no. 8421-205.

2008

N. Anscombe and O. Graydon, Nat. Photonics 2, 143 (2008).

2000

K. T. V. Grattan and T. Sun, Sens. Actuators A 82, 40 (2000).
[CrossRef]

1997

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, and K. P. Koo, J. Lightwave Technol. 15, 1142 (1997).
[CrossRef]

1985

J. P. Dakin and D. J. Pratt, IEEE Electron. Lett. 21, 569 (1985).
[CrossRef]

Bolognini, G.

T. Nannipieri, M. Taki, F. Zaidi, A. Signorini, M. A. Soto, G. Bolognini, and F. Di Pasquale, “Hybrid BOTDA/FBG sensor for discrete dynamic and distributed static strain/temperature measurements,” presented at the 22nd International Conference on Optical Fiber Sensors (OFS-22), October 15–19, 2012, Beijing, China, paper no. 8421-205.

Dakin, J. P.

J. P. Dakin and D. J. Pratt, IEEE Electron. Lett. 21, 569 (1985).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, and K. P. Koo, J. Lightwave Technol. 15, 1142 (1997).
[CrossRef]

Di Pasquale, F.

T. Nannipieri, M. Taki, F. Zaidi, A. Signorini, M. A. Soto, G. Bolognini, and F. Di Pasquale, “Hybrid BOTDA/FBG sensor for discrete dynamic and distributed static strain/temperature measurements,” presented at the 22nd International Conference on Optical Fiber Sensors (OFS-22), October 15–19, 2012, Beijing, China, paper no. 8421-205.

Grattan, K. T. V.

K. T. V. Grattan and T. Sun, Sens. Actuators A 82, 40 (2000).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, and K. P. Koo, J. Lightwave Technol. 15, 1142 (1997).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, and K. P. Koo, J. Lightwave Technol. 15, 1142 (1997).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, and K. P. Koo, J. Lightwave Technol. 15, 1142 (1997).
[CrossRef]

Nannipieri, T.

T. Nannipieri, M. Taki, F. Zaidi, A. Signorini, M. A. Soto, G. Bolognini, and F. Di Pasquale, “Hybrid BOTDA/FBG sensor for discrete dynamic and distributed static strain/temperature measurements,” presented at the 22nd International Conference on Optical Fiber Sensors (OFS-22), October 15–19, 2012, Beijing, China, paper no. 8421-205.

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, and K. P. Koo, J. Lightwave Technol. 15, 1142 (1997).
[CrossRef]

Pratt, D. J.

J. P. Dakin and D. J. Pratt, IEEE Electron. Lett. 21, 569 (1985).
[CrossRef]

Signorini, A.

T. Nannipieri, M. Taki, F. Zaidi, A. Signorini, M. A. Soto, G. Bolognini, and F. Di Pasquale, “Hybrid BOTDA/FBG sensor for discrete dynamic and distributed static strain/temperature measurements,” presented at the 22nd International Conference on Optical Fiber Sensors (OFS-22), October 15–19, 2012, Beijing, China, paper no. 8421-205.

Soto, M. A.

T. Nannipieri, M. Taki, F. Zaidi, A. Signorini, M. A. Soto, G. Bolognini, and F. Di Pasquale, “Hybrid BOTDA/FBG sensor for discrete dynamic and distributed static strain/temperature measurements,” presented at the 22nd International Conference on Optical Fiber Sensors (OFS-22), October 15–19, 2012, Beijing, China, paper no. 8421-205.

Sun, T.

K. T. V. Grattan and T. Sun, Sens. Actuators A 82, 40 (2000).
[CrossRef]

Taki, M.

T. Nannipieri, M. Taki, F. Zaidi, A. Signorini, M. A. Soto, G. Bolognini, and F. Di Pasquale, “Hybrid BOTDA/FBG sensor for discrete dynamic and distributed static strain/temperature measurements,” presented at the 22nd International Conference on Optical Fiber Sensors (OFS-22), October 15–19, 2012, Beijing, China, paper no. 8421-205.

Zaidi, F.

T. Nannipieri, M. Taki, F. Zaidi, A. Signorini, M. A. Soto, G. Bolognini, and F. Di Pasquale, “Hybrid BOTDA/FBG sensor for discrete dynamic and distributed static strain/temperature measurements,” presented at the 22nd International Conference on Optical Fiber Sensors (OFS-22), October 15–19, 2012, Beijing, China, paper no. 8421-205.

IEEE Electron. Lett.

J. P. Dakin and D. J. Pratt, IEEE Electron. Lett. 21, 569 (1985).
[CrossRef]

J. Lightwave Technol.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, and K. P. Koo, J. Lightwave Technol. 15, 1142 (1997).
[CrossRef]

Nat. Photonics

N. Anscombe and O. Graydon, Nat. Photonics 2, 143 (2008).

Sens. Actuators A

K. T. V. Grattan and T. Sun, Sens. Actuators A 82, 40 (2000).
[CrossRef]

Other

T. Nannipieri, M. Taki, F. Zaidi, A. Signorini, M. A. Soto, G. Bolognini, and F. Di Pasquale, “Hybrid BOTDA/FBG sensor for discrete dynamic and distributed static strain/temperature measurements,” presented at the 22nd International Conference on Optical Fiber Sensors (OFS-22), October 15–19, 2012, Beijing, China, paper no. 8421-205.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Optical spectrum of the proposed dynamic strain interrogation technique.

Fig. 2.
Fig. 2.

Experimental setup of the hybrid Raman/FBG sensor.

Fig. 3.
Fig. 3.

Raman anti-Stokes trace at room temperature.

Fig. 4.
Fig. 4.

(a) Characterization of the interrogation function against applied temperature and (b) reflected pulse intensity from both FBGs at different temperatures.

Fig. 5.
Fig. 5.

Temperature profile along 10.9 km of fiber.

Fig. 6.
Fig. 6.

Temperature resolution along the fiber for the setup with (green) and without (blue) FBGs.

Fig. 7.
Fig. 7.

Dynamic strain measurements at 250 Hz. (a) Time-domain trace and (b) normalized fast Fourier transform.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ρ ( Δ λ B ) = ln ( Z L-FBG Z L-FBG + Δ Z I LR-FBG ( Δ λ B , ξ ) d ξ ) ln ( Z R-FBG Z R-FBG + Δ Z I LR-FBG ( Δ λ B , ξ ) d ξ ) ,

Metrics