Abstract

The implementation of a polarization-based spatial heterodyne interferometer (SHI) is described. While a conventional SHI uses a Michelson interferometer and diffraction gratings, our SHI exploits mechanically robust Wollaston prisms and polarization gratings. A theoretical model for the polarization SHI is provided and validated with data from our proof of concept experiments. This device is expected to provide a compact monolithic sensor for subangstrom resolution spectroscopy in remote sensing, biomedical imaging, and machine vision applications.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Meriwether, J. Atmos. Sol. Terr. Phys. 68, 1576 (2006).
    [CrossRef]
  2. B. S. Gray, S. P. Spoor, and I. D. Latimer, Meas. Sci. Technol. 1, 1072 (1990).
    [CrossRef]
  3. W. Liller, Appl. Opt. 9, 2332 (1970).
    [CrossRef]
  4. P. Mouroulis, R. G. Sellar, D. W. Wilson, J. J. Shea, and R. O. Green, Opt. Eng. 46, 063001 (2007).
    [CrossRef]
  5. M. W. Kudenov, J. Craven-Jones, R. Aumiller, C. Vandervlugt, and E. L. Dereniak, Opt. Eng. 51, 044002 (2012).
    [CrossRef]
  6. G. Hernandez and R. G. Roble, Appl. Opt. 18, 3376 (1979).
    [CrossRef]
  7. J. Beckers, L. Dickson, and R. Joyce, Appl. Opt. 14, 2061 (1975).
    [CrossRef]
  8. C. R. Englert, D. D. Babcock, and J. M. Harlander, Appl. Opt. 46, 7297 (2007).
    [CrossRef]
  9. P. B. Hays and R. G. Roble, Appl. Opt. 10, 193 (1971).
    [CrossRef]
  10. J. M. Harlander, R. J. Reynolds, and F. L. Roesler, J. Astrophys. 396, 730 (1992).
    [CrossRef]
  11. S. Watchorn, J. Noto, J. Anderson, and C. E. Sioris, Proc. SPIE 7812, 781207 (2010).
  12. C. Oh and M. J. Escuti, Opt. Lett. 33, 2287 (2008).
    [CrossRef]
  13. M. W. Kudenov, M. J. Escuti, E. L. Dereniak, and K. Oka, Appl. Opt. 50, 2283 (2011).
    [CrossRef]
  14. M. Kudenov, M. Escuti, N. Hagen, E. Dereniak, and K. Oka, Opt. Lett. 37, 1367 (2012).
    [CrossRef]
  15. M. J. Padgett, A. R. Harvey, A. J. Duncan, and W. Sibbett, Appl. Opt. 33, 6035 (1994).
    [CrossRef]
  16. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley-Interscience, 1986).
  17. M. W. Kudenov and E. L. Dereniak, Opt. Express 20, 17973 (2012).
    [CrossRef]
  18. H. Ono, T. Wada, and N. Kawatsuki, Jpn. J. Appl. Phys. 51, 030202 (2012).
    [CrossRef]

2012

M. W. Kudenov, J. Craven-Jones, R. Aumiller, C. Vandervlugt, and E. L. Dereniak, Opt. Eng. 51, 044002 (2012).
[CrossRef]

M. Kudenov, M. Escuti, N. Hagen, E. Dereniak, and K. Oka, Opt. Lett. 37, 1367 (2012).
[CrossRef]

M. W. Kudenov and E. L. Dereniak, Opt. Express 20, 17973 (2012).
[CrossRef]

H. Ono, T. Wada, and N. Kawatsuki, Jpn. J. Appl. Phys. 51, 030202 (2012).
[CrossRef]

2011

2010

S. Watchorn, J. Noto, J. Anderson, and C. E. Sioris, Proc. SPIE 7812, 781207 (2010).

2008

2007

C. R. Englert, D. D. Babcock, and J. M. Harlander, Appl. Opt. 46, 7297 (2007).
[CrossRef]

P. Mouroulis, R. G. Sellar, D. W. Wilson, J. J. Shea, and R. O. Green, Opt. Eng. 46, 063001 (2007).
[CrossRef]

2006

J. W. Meriwether, J. Atmos. Sol. Terr. Phys. 68, 1576 (2006).
[CrossRef]

1994

1992

J. M. Harlander, R. J. Reynolds, and F. L. Roesler, J. Astrophys. 396, 730 (1992).
[CrossRef]

1990

B. S. Gray, S. P. Spoor, and I. D. Latimer, Meas. Sci. Technol. 1, 1072 (1990).
[CrossRef]

1979

1975

1971

1970

Anderson, J.

S. Watchorn, J. Noto, J. Anderson, and C. E. Sioris, Proc. SPIE 7812, 781207 (2010).

Aumiller, R.

M. W. Kudenov, J. Craven-Jones, R. Aumiller, C. Vandervlugt, and E. L. Dereniak, Opt. Eng. 51, 044002 (2012).
[CrossRef]

Babcock, D. D.

Beckers, J.

Craven-Jones, J.

M. W. Kudenov, J. Craven-Jones, R. Aumiller, C. Vandervlugt, and E. L. Dereniak, Opt. Eng. 51, 044002 (2012).
[CrossRef]

de Haseth, J. A.

P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley-Interscience, 1986).

Dereniak, E.

Dereniak, E. L.

Dickson, L.

Duncan, A. J.

Englert, C. R.

Escuti, M.

Escuti, M. J.

Gray, B. S.

B. S. Gray, S. P. Spoor, and I. D. Latimer, Meas. Sci. Technol. 1, 1072 (1990).
[CrossRef]

Green, R. O.

P. Mouroulis, R. G. Sellar, D. W. Wilson, J. J. Shea, and R. O. Green, Opt. Eng. 46, 063001 (2007).
[CrossRef]

Griffiths, P. R.

P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley-Interscience, 1986).

Hagen, N.

Harlander, J. M.

C. R. Englert, D. D. Babcock, and J. M. Harlander, Appl. Opt. 46, 7297 (2007).
[CrossRef]

J. M. Harlander, R. J. Reynolds, and F. L. Roesler, J. Astrophys. 396, 730 (1992).
[CrossRef]

Harvey, A. R.

Hays, P. B.

Hernandez, G.

Joyce, R.

Kawatsuki, N.

H. Ono, T. Wada, and N. Kawatsuki, Jpn. J. Appl. Phys. 51, 030202 (2012).
[CrossRef]

Kudenov, M.

Kudenov, M. W.

Latimer, I. D.

B. S. Gray, S. P. Spoor, and I. D. Latimer, Meas. Sci. Technol. 1, 1072 (1990).
[CrossRef]

Liller, W.

Meriwether, J. W.

J. W. Meriwether, J. Atmos. Sol. Terr. Phys. 68, 1576 (2006).
[CrossRef]

Mouroulis, P.

P. Mouroulis, R. G. Sellar, D. W. Wilson, J. J. Shea, and R. O. Green, Opt. Eng. 46, 063001 (2007).
[CrossRef]

Noto, J.

S. Watchorn, J. Noto, J. Anderson, and C. E. Sioris, Proc. SPIE 7812, 781207 (2010).

Oh, C.

Oka, K.

Ono, H.

H. Ono, T. Wada, and N. Kawatsuki, Jpn. J. Appl. Phys. 51, 030202 (2012).
[CrossRef]

Padgett, M. J.

Reynolds, R. J.

J. M. Harlander, R. J. Reynolds, and F. L. Roesler, J. Astrophys. 396, 730 (1992).
[CrossRef]

Roble, R. G.

Roesler, F. L.

J. M. Harlander, R. J. Reynolds, and F. L. Roesler, J. Astrophys. 396, 730 (1992).
[CrossRef]

Sellar, R. G.

P. Mouroulis, R. G. Sellar, D. W. Wilson, J. J. Shea, and R. O. Green, Opt. Eng. 46, 063001 (2007).
[CrossRef]

Shea, J. J.

P. Mouroulis, R. G. Sellar, D. W. Wilson, J. J. Shea, and R. O. Green, Opt. Eng. 46, 063001 (2007).
[CrossRef]

Sibbett, W.

Sioris, C. E.

S. Watchorn, J. Noto, J. Anderson, and C. E. Sioris, Proc. SPIE 7812, 781207 (2010).

Spoor, S. P.

B. S. Gray, S. P. Spoor, and I. D. Latimer, Meas. Sci. Technol. 1, 1072 (1990).
[CrossRef]

Vandervlugt, C.

M. W. Kudenov, J. Craven-Jones, R. Aumiller, C. Vandervlugt, and E. L. Dereniak, Opt. Eng. 51, 044002 (2012).
[CrossRef]

Wada, T.

H. Ono, T. Wada, and N. Kawatsuki, Jpn. J. Appl. Phys. 51, 030202 (2012).
[CrossRef]

Watchorn, S.

S. Watchorn, J. Noto, J. Anderson, and C. E. Sioris, Proc. SPIE 7812, 781207 (2010).

Wilson, D. W.

P. Mouroulis, R. G. Sellar, D. W. Wilson, J. J. Shea, and R. O. Green, Opt. Eng. 46, 063001 (2007).
[CrossRef]

Appl. Opt.

J. Astrophys.

J. M. Harlander, R. J. Reynolds, and F. L. Roesler, J. Astrophys. 396, 730 (1992).
[CrossRef]

J. Atmos. Sol. Terr. Phys.

J. W. Meriwether, J. Atmos. Sol. Terr. Phys. 68, 1576 (2006).
[CrossRef]

Jpn. J. Appl. Phys.

H. Ono, T. Wada, and N. Kawatsuki, Jpn. J. Appl. Phys. 51, 030202 (2012).
[CrossRef]

Meas. Sci. Technol.

B. S. Gray, S. P. Spoor, and I. D. Latimer, Meas. Sci. Technol. 1, 1072 (1990).
[CrossRef]

Opt. Eng.

P. Mouroulis, R. G. Sellar, D. W. Wilson, J. J. Shea, and R. O. Green, Opt. Eng. 46, 063001 (2007).
[CrossRef]

M. W. Kudenov, J. Craven-Jones, R. Aumiller, C. Vandervlugt, and E. L. Dereniak, Opt. Eng. 51, 044002 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

S. Watchorn, J. Noto, J. Anderson, and C. E. Sioris, Proc. SPIE 7812, 781207 (2010).

Other

P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley-Interscience, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Michelson-based SHI. Wavefronts exit the BS tilted. Only green is shown for clarity.

Fig. 2.
Fig. 2.

Diagram of the PSHI. Orthogonally polarized wavefronts exit the PG tilted. Note that only the green wavefronts (dashed lines) are shown for clarity and that a variation of these parts can be laminated together to form a monolithic part.

Fig. 3.
Fig. 3.

(a) Experimental proof of concept’s layout for the polarization SHI. (b) Afocal relays can be removed to form a monolithic and compact device.

Fig. 4.
Fig. 4.

Measured spatial frequency versus wavenumber (circles) and a second order polynomial fit (solid line). Included are 2D images of the measured fringes at four wavenumbers.

Fig. 5.
Fig. 5.

White light heterodyned interferograms. (a) Prism with no PG. (b) Prism and PG (45° QWP). (c) Prism and PG (45° QWP).

Fig. 6.
Fig. 6.

Spectrum of the interferograms in Fig. 5 versus the FPA’s spatial frequency in mm1. (a) Prism only and no PG. (b) Prism and PG with QWP at 45°. (c) Prism and PG with QWP at 45°.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

θ±1=Δntan(α)±λ/Λ.
OPD=2x[Δntan(α)λ/Λ].
I(x,y)=1+cos(2πOPD/λ),
I(x,y)=1+cos(2πx[2Δntan(α)σ2/Λ]),
λh=ΛΔntan(α).
λh=ΛΔnκtan(α),
I=A+Qcos(2πξ(xxo))

Metrics