Abstract

This Letter demonstrates the direct fabrication of gapless concave microlenses on glass cylinders, which can be used as seamless roller molds for the continuous imprinting of large-area microlens arrays. The method involves femtosecond laser exposures followed by a chemical wet-etching process. A honeycomb-like concave microlens array was fabricated on a glass cylinder with a diameter of 3 mm. We demonstrated the flexibility of the method in tuning the shape and depth of the concave structures by the arrangements of the laser exposure spots and laser powers, and examined the replicating ability of the roller mold by the polymer castling method.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Yang, Q. Y. Bao, Z. Q. Xu, Y. Q. Li, J. X. Tang, and S. Shen, Appl. Phys. Lett. 97, 223303 (2010).
    [CrossRef]
  2. M.-K. Wei and Su I-Lin, Opt. Express 12, 5777 (2004).
    [CrossRef]
  3. C.-P. Lin, H. Yang, and C.-K. Chao, J. Micromech. Microeng. 13, 775 (2003).
    [CrossRef]
  4. D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, IEEE Photon. Technol. Lett. 6, 1112 (1994).
    [CrossRef]
  5. J. Yao, J. Q. Su, J. L. Du, Y. X. Zhang, F. H. Gao, F. Gao, Y. K. Guo, and Z. Cui, Microelectron. Eng. 53, 531 (2000).
    [CrossRef]
  6. S. H. Ahn and L. J. Guo, Adv. Mater. 20, 2044 (2008).
    [CrossRef]
  7. A. M. Bowen and R. G. Nuzzo, Adv. Funct. Matter. 19, 3243 (2009).
    [CrossRef]
  8. A. Y. Yi and L. Li, Opt. Lett. 30, 1707 (2005).
    [CrossRef]
  9. W. Wang, X. Mei, and G. Jiang, Int. J. Adv. Manuf. Technol. 41, 504 (2009).
    [CrossRef]
  10. Y.-C. Lee, H.-W. Chen, and F.-B. Hsiao, J. Microelectromech. Syst. 21, 316 (2012).
    [CrossRef]
  11. F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, Opt. Express 18, 20334 (2010).
    [CrossRef]
  12. D. Wu, S.-Z. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, J.-F. Song, H.-H. Fang, and H.-B. Sun, Appl. Phys. Lett. 97, 031109 (2010).
    [CrossRef]
  13. H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, Opt. Commun. 282, 4119 (2009).
    [CrossRef]
  14. J.-T. Wu and S.-Y. Yang, J. Micromech. Microeng. 20, 085038 (2010).
    [CrossRef]
  15. A long exposure time will help to fabricate uniform concave structures, but sacrifice the processing efficiency. And the used value of 500 ms is an optimized result in the previous experiment shown in Chen et al. [11].
  16. H. Feng, X. Wang, and H. Zhai, J. Phys. D 44, 135202 (2011).
  17. E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006).
    [CrossRef]

2012

Y.-C. Lee, H.-W. Chen, and F.-B. Hsiao, J. Microelectromech. Syst. 21, 316 (2012).
[CrossRef]

2011

H. Feng, X. Wang, and H. Zhai, J. Phys. D 44, 135202 (2011).

2010

J.-T. Wu and S.-Y. Yang, J. Micromech. Microeng. 20, 085038 (2010).
[CrossRef]

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, Opt. Express 18, 20334 (2010).
[CrossRef]

D. Wu, S.-Z. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, J.-F. Song, H.-H. Fang, and H.-B. Sun, Appl. Phys. Lett. 97, 031109 (2010).
[CrossRef]

J. P. Yang, Q. Y. Bao, Z. Q. Xu, Y. Q. Li, J. X. Tang, and S. Shen, Appl. Phys. Lett. 97, 223303 (2010).
[CrossRef]

2009

A. M. Bowen and R. G. Nuzzo, Adv. Funct. Matter. 19, 3243 (2009).
[CrossRef]

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, Opt. Commun. 282, 4119 (2009).
[CrossRef]

W. Wang, X. Mei, and G. Jiang, Int. J. Adv. Manuf. Technol. 41, 504 (2009).
[CrossRef]

2008

S. H. Ahn and L. J. Guo, Adv. Mater. 20, 2044 (2008).
[CrossRef]

2006

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006).
[CrossRef]

2005

2004

2003

C.-P. Lin, H. Yang, and C.-K. Chao, J. Micromech. Microeng. 13, 775 (2003).
[CrossRef]

2000

J. Yao, J. Q. Su, J. L. Du, Y. X. Zhang, F. H. Gao, F. Gao, Y. K. Guo, and Z. Cui, Microelectron. Eng. 53, 531 (2000).
[CrossRef]

1994

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, IEEE Photon. Technol. Lett. 6, 1112 (1994).
[CrossRef]

Ahn, S. H.

S. H. Ahn and L. J. Guo, Adv. Mater. 20, 2044 (2008).
[CrossRef]

Bao, Q. Y.

J. P. Yang, Q. Y. Bao, Z. Q. Xu, Y. Q. Li, J. X. Tang, and S. Shen, Appl. Phys. Lett. 97, 223303 (2010).
[CrossRef]

Bian, H.

Bowen, A. M.

A. M. Bowen and R. G. Nuzzo, Adv. Funct. Matter. 19, 3243 (2009).
[CrossRef]

Chao, C.-K.

C.-P. Lin, H. Yang, and C.-K. Chao, J. Micromech. Microeng. 13, 775 (2003).
[CrossRef]

Chen, F.

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, Opt. Express 18, 20334 (2010).
[CrossRef]

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, Opt. Commun. 282, 4119 (2009).
[CrossRef]

Chen, H.-W.

Y.-C. Lee, H.-W. Chen, and F.-B. Hsiao, J. Microelectromech. Syst. 21, 316 (2012).
[CrossRef]

Chen, Q.-D.

D. Wu, S.-Z. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, J.-F. Song, H.-H. Fang, and H.-B. Sun, Appl. Phys. Lett. 97, 031109 (2010).
[CrossRef]

Chen, T.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, IEEE Photon. Technol. Lett. 6, 1112 (1994).
[CrossRef]

Cox, W. R.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, IEEE Photon. Technol. Lett. 6, 1112 (1994).
[CrossRef]

Cui, Z.

J. Yao, J. Q. Su, J. L. Du, Y. X. Zhang, F. H. Gao, F. Gao, Y. K. Guo, and Z. Cui, Microelectron. Eng. 53, 531 (2000).
[CrossRef]

Du, J. L.

J. Yao, J. Q. Su, J. L. Du, Y. X. Zhang, F. H. Gao, F. Gao, Y. K. Guo, and Z. Cui, Microelectron. Eng. 53, 531 (2000).
[CrossRef]

Fang, H.-H.

D. Wu, S.-Z. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, J.-F. Song, H.-H. Fang, and H.-B. Sun, Appl. Phys. Lett. 97, 031109 (2010).
[CrossRef]

Feng, H.

H. Feng, X. Wang, and H. Zhai, J. Phys. D 44, 135202 (2011).

Gamaly, E. G.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Gao, F.

J. Yao, J. Q. Su, J. L. Du, Y. X. Zhang, F. H. Gao, F. Gao, Y. K. Guo, and Z. Cui, Microelectron. Eng. 53, 531 (2000).
[CrossRef]

Gao, F. H.

J. Yao, J. Q. Su, J. L. Du, Y. X. Zhang, F. H. Gao, F. Gao, Y. K. Guo, and Z. Cui, Microelectron. Eng. 53, 531 (2000).
[CrossRef]

Guo, L. J.

S. H. Ahn and L. J. Guo, Adv. Mater. 20, 2044 (2008).
[CrossRef]

Guo, Y. K.

J. Yao, J. Q. Su, J. L. Du, Y. X. Zhang, F. H. Gao, F. Gao, Y. K. Guo, and Z. Cui, Microelectron. Eng. 53, 531 (2000).
[CrossRef]

Hallo, L.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Hayes, D. J.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, IEEE Photon. Technol. Lett. 6, 1112 (1994).
[CrossRef]

Hou, C.

Hou, X.

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, Opt. Express 18, 20334 (2010).
[CrossRef]

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, Opt. Commun. 282, 4119 (2009).
[CrossRef]

Hsiao, F.-B.

Y.-C. Lee, H.-W. Chen, and F.-B. Hsiao, J. Microelectromech. Syst. 21, 316 (2012).
[CrossRef]

I-Lin, Su

Jiang, G.

W. Wang, X. Mei, and G. Jiang, Int. J. Adv. Manuf. Technol. 41, 504 (2009).
[CrossRef]

Juodkazis, S.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Lee, Y.-C.

Y.-C. Lee, H.-W. Chen, and F.-B. Hsiao, J. Microelectromech. Syst. 21, 316 (2012).
[CrossRef]

Li, L.

Li, Y. Q.

J. P. Yang, Q. Y. Bao, Z. Q. Xu, Y. Q. Li, J. X. Tang, and S. Shen, Appl. Phys. Lett. 97, 223303 (2010).
[CrossRef]

Liang, W.

Lin, C.-P.

C.-P. Lin, H. Yang, and C.-K. Chao, J. Micromech. Microeng. 13, 775 (2003).
[CrossRef]

Liu, H.

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, Opt. Express 18, 20334 (2010).
[CrossRef]

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, Opt. Commun. 282, 4119 (2009).
[CrossRef]

Luther-Davies, B.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006).
[CrossRef]

MacFarlane, D. L.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, IEEE Photon. Technol. Lett. 6, 1112 (1994).
[CrossRef]

Mei, X.

W. Wang, X. Mei, and G. Jiang, Int. J. Adv. Manuf. Technol. 41, 504 (2009).
[CrossRef]

Misawa, H.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Narayan, V.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, IEEE Photon. Technol. Lett. 6, 1112 (1994).
[CrossRef]

Nicolai, P.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Nishimura, K.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Niu, L.-G.

D. Wu, S.-Z. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, J.-F. Song, H.-H. Fang, and H.-B. Sun, Appl. Phys. Lett. 97, 031109 (2010).
[CrossRef]

Nuzzo, R. G.

A. M. Bowen and R. G. Nuzzo, Adv. Funct. Matter. 19, 3243 (2009).
[CrossRef]

Shen, S.

J. P. Yang, Q. Y. Bao, Z. Q. Xu, Y. Q. Li, J. X. Tang, and S. Shen, Appl. Phys. Lett. 97, 223303 (2010).
[CrossRef]

Si, J.

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, Opt. Express 18, 20334 (2010).
[CrossRef]

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, Opt. Commun. 282, 4119 (2009).
[CrossRef]

Song, J.-F.

D. Wu, S.-Z. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, J.-F. Song, H.-H. Fang, and H.-B. Sun, Appl. Phys. Lett. 97, 031109 (2010).
[CrossRef]

Su, J. Q.

J. Yao, J. Q. Su, J. L. Du, Y. X. Zhang, F. H. Gao, F. Gao, Y. K. Guo, and Z. Cui, Microelectron. Eng. 53, 531 (2000).
[CrossRef]

Sun, H.-B.

D. Wu, S.-Z. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, J.-F. Song, H.-H. Fang, and H.-B. Sun, Appl. Phys. Lett. 97, 031109 (2010).
[CrossRef]

Tang, J. X.

J. P. Yang, Q. Y. Bao, Z. Q. Xu, Y. Q. Li, J. X. Tang, and S. Shen, Appl. Phys. Lett. 97, 223303 (2010).
[CrossRef]

Tatum, J. A.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, IEEE Photon. Technol. Lett. 6, 1112 (1994).
[CrossRef]

Tikhonchuk, V. T.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Wang, R.

D. Wu, S.-Z. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, J.-F. Song, H.-H. Fang, and H.-B. Sun, Appl. Phys. Lett. 97, 031109 (2010).
[CrossRef]

Wang, W.

W. Wang, X. Mei, and G. Jiang, Int. J. Adv. Manuf. Technol. 41, 504 (2009).
[CrossRef]

Wang, X.

H. Feng, X. Wang, and H. Zhai, J. Phys. D 44, 135202 (2011).

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, Opt. Express 18, 20334 (2010).
[CrossRef]

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, Opt. Commun. 282, 4119 (2009).
[CrossRef]

Wei, M.-K.

Wu, D.

D. Wu, S.-Z. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, J.-F. Song, H.-H. Fang, and H.-B. Sun, Appl. Phys. Lett. 97, 031109 (2010).
[CrossRef]

Wu, J.-T.

J.-T. Wu and S.-Y. Yang, J. Micromech. Microeng. 20, 085038 (2010).
[CrossRef]

Wu, S.-Z.

D. Wu, S.-Z. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, J.-F. Song, H.-H. Fang, and H.-B. Sun, Appl. Phys. Lett. 97, 031109 (2010).
[CrossRef]

Xu, Z. Q.

J. P. Yang, Q. Y. Bao, Z. Q. Xu, Y. Q. Li, J. X. Tang, and S. Shen, Appl. Phys. Lett. 97, 223303 (2010).
[CrossRef]

Yang, H.

C.-P. Lin, H. Yang, and C.-K. Chao, J. Micromech. Microeng. 13, 775 (2003).
[CrossRef]

Yang, J. P.

J. P. Yang, Q. Y. Bao, Z. Q. Xu, Y. Q. Li, J. X. Tang, and S. Shen, Appl. Phys. Lett. 97, 223303 (2010).
[CrossRef]

Yang, Q.

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, Opt. Express 18, 20334 (2010).
[CrossRef]

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, Opt. Commun. 282, 4119 (2009).
[CrossRef]

Yang, S.-Y.

J.-T. Wu and S.-Y. Yang, J. Micromech. Microeng. 20, 085038 (2010).
[CrossRef]

Yao, J.

J. Yao, J. Q. Su, J. L. Du, Y. X. Zhang, F. H. Gao, F. Gao, Y. K. Guo, and Z. Cui, Microelectron. Eng. 53, 531 (2000).
[CrossRef]

Yi, A. Y.

Zhai, H.

H. Feng, X. Wang, and H. Zhai, J. Phys. D 44, 135202 (2011).

Zhang, D.

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, Opt. Commun. 282, 4119 (2009).
[CrossRef]

Zhang, Y. X.

J. Yao, J. Q. Su, J. L. Du, Y. X. Zhang, F. H. Gao, F. Gao, Y. K. Guo, and Z. Cui, Microelectron. Eng. 53, 531 (2000).
[CrossRef]

Adv. Funct. Matter.

A. M. Bowen and R. G. Nuzzo, Adv. Funct. Matter. 19, 3243 (2009).
[CrossRef]

Adv. Mater.

S. H. Ahn and L. J. Guo, Adv. Mater. 20, 2044 (2008).
[CrossRef]

Appl. Phys. Lett.

J. P. Yang, Q. Y. Bao, Z. Q. Xu, Y. Q. Li, J. X. Tang, and S. Shen, Appl. Phys. Lett. 97, 223303 (2010).
[CrossRef]

D. Wu, S.-Z. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, J.-F. Song, H.-H. Fang, and H.-B. Sun, Appl. Phys. Lett. 97, 031109 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, IEEE Photon. Technol. Lett. 6, 1112 (1994).
[CrossRef]

Int. J. Adv. Manuf. Technol.

W. Wang, X. Mei, and G. Jiang, Int. J. Adv. Manuf. Technol. 41, 504 (2009).
[CrossRef]

J. Microelectromech. Syst.

Y.-C. Lee, H.-W. Chen, and F.-B. Hsiao, J. Microelectromech. Syst. 21, 316 (2012).
[CrossRef]

J. Micromech. Microeng.

J.-T. Wu and S.-Y. Yang, J. Micromech. Microeng. 20, 085038 (2010).
[CrossRef]

C.-P. Lin, H. Yang, and C.-K. Chao, J. Micromech. Microeng. 13, 775 (2003).
[CrossRef]

J. Phys. D

H. Feng, X. Wang, and H. Zhai, J. Phys. D 44, 135202 (2011).

Microelectron. Eng.

J. Yao, J. Q. Su, J. L. Du, Y. X. Zhang, F. H. Gao, F. Gao, Y. K. Guo, and Z. Cui, Microelectron. Eng. 53, 531 (2000).
[CrossRef]

Opt. Commun.

H. Liu, F. Chen, X. Wang, Q. Yang, D. Zhang, J. Si, and X. Hou, Opt. Commun. 282, 4119 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Other

A long exposure time will help to fabricate uniform concave structures, but sacrifice the processing efficiency. And the used value of 500 ms is an optimized result in the previous experiment shown in Chen et al. [11].

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

SEM observations of the microlens array. (a) Overall observation of the microlens array. (b) Magnified top view of the microlenses on the cylindrical surface. (c) Side view of the microlens array. (d) Magnified side view of the microlens array.

Fig. 2.
Fig. 2.

(a) Schematic diagram of the fabrication process. The insert figures show the morphology revolutions of the exposure spots during the chemical etching process. (b) Optical image of the tap chuck. The glass rod was fixed in the chunk. (c) Optical profile of the glass rod with the fabricated microlens array.

Fig. 3.
Fig. 3.

(a) SEM images of the microlens array on the glass cylinder, which is composed of pentagonal and hexagonal-shaped lenses. Two scale bars denote for 100 μm. (b) Power dependency of the depth of the concave microstructures. Triangles, dots, and blocks denote the different exposure times, which are 1500, 500, and 100 ms, respectively. The insertion shows optical profiles of the concave structures. The scale bar equals 100 μm.

Fig. 4.
Fig. 4.

(a) Part of 3D profile of the convex microlens array that was replicated from the roller mold. (b) Cross-sectional profile of a microlens in the replica. (c) Optical setup for testing the imaging property of the microlens arrays. (d) Images of the letter A. Scale bars denote 100 μm.

Metrics