Abstract

We present a dispersion-free method for the pulse duration reduction of passively Q-switched microchip laser (MCL) seed sources. This technique comprises two stages: one that carries out the self-phase modulation induced spectral broadening in a waveguide structure and a subsequent spectral filtering stage in order to shorten the pulses in time domain. The setup of a proof-of-principle experiment consists of a fiber-amplified passively Q-switched MCL, a passive single-mode fiber used as nonlinear element in which the spectrum is broadened, and a reflective volume-Bragg-grating acting as bandpass filter. A reduction of the pulse duration from 118 to 32 ps with high temporal quality has been achieved with this setup.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Zayhowski and C. Dill, Opt. Lett. 19, 1427 (1994).
    [CrossRef]
  2. B. Braun, F. X. Kärtner, G. Zhang, M. Moser, and U. Keller, Opt. Lett. 22, 381 (1997).
    [CrossRef]
  3. G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, J. Opt. Soc. Am. B 16, 376 (1999).
    [CrossRef]
  4. D. Nodop, J. Limpert, R. Hohmuth, W. Richter, M. Guina, and A. Tünnermann, Opt. Lett. 32, 2115 (2007).
    [CrossRef]
  5. A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, Appl. Phys. B 97, 317 (2009).
    [CrossRef]
  6. F. Doutre, D. Pagnoux, V. Couderc, A. Tonello, and A. Jalocha, Opt. Lett. 34, 2087 (2009).
    [CrossRef]
  7. A. Steinmetz, F. Jansen, F. Stutzki, R. Lehneis, J. Limpert, and A. Tünnermann, Opt. Lett. 37, 2550 (2012).
    [CrossRef]
  8. A. Ancona, D. Nodop, J. Limpert, S. Nolte, and A. Tünnermann, Appl. Phys. A 94, 19 (2009).
    [CrossRef]

2012 (1)

2009 (3)

F. Doutre, D. Pagnoux, V. Couderc, A. Tonello, and A. Jalocha, Opt. Lett. 34, 2087 (2009).
[CrossRef]

A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, Appl. Phys. B 97, 317 (2009).
[CrossRef]

A. Ancona, D. Nodop, J. Limpert, S. Nolte, and A. Tünnermann, Appl. Phys. A 94, 19 (2009).
[CrossRef]

2007 (1)

1999 (1)

1997 (1)

1994 (1)

Ancona, A.

A. Ancona, D. Nodop, J. Limpert, S. Nolte, and A. Tünnermann, Appl. Phys. A 94, 19 (2009).
[CrossRef]

Braun, B.

Couderc, V.

Dill, C.

Doutre, F.

Fluck, R.

Gini, E.

Guina, M.

Hohmuth, R.

A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, Appl. Phys. B 97, 317 (2009).
[CrossRef]

D. Nodop, J. Limpert, R. Hohmuth, W. Richter, M. Guina, and A. Tünnermann, Opt. Lett. 32, 2115 (2007).
[CrossRef]

Jalocha, A.

Jansen, F.

Kärtner, F. X.

Keller, U.

Lehneis, R.

Limpert, J.

A. Steinmetz, F. Jansen, F. Stutzki, R. Lehneis, J. Limpert, and A. Tünnermann, Opt. Lett. 37, 2550 (2012).
[CrossRef]

A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, Appl. Phys. B 97, 317 (2009).
[CrossRef]

A. Ancona, D. Nodop, J. Limpert, S. Nolte, and A. Tünnermann, Appl. Phys. A 94, 19 (2009).
[CrossRef]

D. Nodop, J. Limpert, R. Hohmuth, W. Richter, M. Guina, and A. Tünnermann, Opt. Lett. 32, 2115 (2007).
[CrossRef]

Moser, M.

Nodop, D.

A. Ancona, D. Nodop, J. Limpert, S. Nolte, and A. Tünnermann, Appl. Phys. A 94, 19 (2009).
[CrossRef]

A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, Appl. Phys. B 97, 317 (2009).
[CrossRef]

D. Nodop, J. Limpert, R. Hohmuth, W. Richter, M. Guina, and A. Tünnermann, Opt. Lett. 32, 2115 (2007).
[CrossRef]

Nolte, S.

A. Ancona, D. Nodop, J. Limpert, S. Nolte, and A. Tünnermann, Appl. Phys. A 94, 19 (2009).
[CrossRef]

Pagnoux, D.

Paschotta, R.

Richter, W.

A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, Appl. Phys. B 97, 317 (2009).
[CrossRef]

D. Nodop, J. Limpert, R. Hohmuth, W. Richter, M. Guina, and A. Tünnermann, Opt. Lett. 32, 2115 (2007).
[CrossRef]

Spühler, G. J.

Steinmetz, A.

A. Steinmetz, F. Jansen, F. Stutzki, R. Lehneis, J. Limpert, and A. Tünnermann, Opt. Lett. 37, 2550 (2012).
[CrossRef]

A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, Appl. Phys. B 97, 317 (2009).
[CrossRef]

Stutzki, F.

Tonello, A.

Tünnermann, A.

A. Steinmetz, F. Jansen, F. Stutzki, R. Lehneis, J. Limpert, and A. Tünnermann, Opt. Lett. 37, 2550 (2012).
[CrossRef]

A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, Appl. Phys. B 97, 317 (2009).
[CrossRef]

A. Ancona, D. Nodop, J. Limpert, S. Nolte, and A. Tünnermann, Appl. Phys. A 94, 19 (2009).
[CrossRef]

D. Nodop, J. Limpert, R. Hohmuth, W. Richter, M. Guina, and A. Tünnermann, Opt. Lett. 32, 2115 (2007).
[CrossRef]

Zayhowski, J. J.

Zhang, G.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Illustration of the instantaneous frequency change Δ ω ( t ) versus time t for an ideal SPM-broadened spectrum of a Gaussian pulse. Spectral filtering around the central region of the SPM spectrum gives rise (in addition to the main pulse) to prepulses and postpulses in time domain.

Fig. 2.
Fig. 2.

Scheme of the experimental setup showing the fiber-amplified microchip laser (MCL), the passive single-mode (SM) fiber and the bandpass filter (VBG). An optical spectrum analyzer (OSA) and a photodiode (PD) are used for characterization.

Fig. 3.
Fig. 3.

(a) Normalized MCL pulse after amplification and (b) corresponding normalized SPM spectrum.

Fig. 4.
Fig. 4.

Filtered spectra when filtering (a) around the central region, (b) above the central region, and (c) at the edge of the SPM spectrum (also shown in every panel).

Fig. 5.
Fig. 5.

Corresponding normalized filtered pulses when filtering (a) around the central region, (b) above the central region, and (c) at the edge of the SPM spectrum.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ ω ( t ) = d φ SPM ( t ) d t 8 ln ( 2 ) · γ · P 0 T FWHM 2 · L eff · t ,
γ = 2 π · n 2 λ · A eff ,
Δ t Pulse T FWHM 2 8 ln ( 2 ) · γ · P 0 · L eff · Δ ω Filter .

Metrics