Abstract

This Letter presents a tunable liquid lens based on microelectrofluidic technology. In the microelectrofluidic lens (MEFL), electrowetting in the hydrophobic surface channel induces the Laplace pressure difference between two fluidic interfaces on the lens aperture and the surface channel. Then, the pressure difference makes the lens curvature tunable. In spite of the contact angle saturation, the narrow surface channel increases the Laplace pressure to have a wide range of optical power variation in the MEFL. The magnitude of the applied voltage determines the lens curvature in the analog mode MEFL. Digital operation is also possible when the control electrodes of the MEFL are patterned to have an array. The lens aperture and maximum surface channel diameter were designed to 3.2 mm and 6.4 mm, respectively, with a channel height of 0.2 mm for an optical power range between +210 and 30D. By switching the control electrodes, the averaged transit time in steps and turnaround time were as low as 2.4 ms and 16.5 ms, respectively, in good agreement with the simulation results. It is expected that the proposed MEFL may be widely used with advantages of wide variation of the optical power with fast and precise controllability in a digital manner.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Weisong and F. Ji, J. Micromech. Microeng. 16, 1221 (2006).
    [CrossRef]
  2. A. Pouydebasque, C. Bridoux, F. Jacquet, S. Moreau, E. Sage, D. Saint-Patrice, C. Bouvier, C. Kopp, G. Marchand, S. Bolis, N. Sillon, and E. Vigier-Blanc, Sens. Actuators A 172, 280 (2011).
    [CrossRef]
  3. S. W. Lee and S. S. Lee, Appl. Phys. Lett. 90, 121129 (2007).
    [CrossRef]
  4. H. Oku and M. Ishikawa, Appl. Phys. Lett. 94, 221108 (2009).
    [CrossRef]
  5. L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, Nature 442, 551 (2006).
    [CrossRef]
  6. S. T. Choi, J. Y. Lee, J. O. Kwon, S. Lee, and W. Kim, Opt. Lett. 36, 1920 (2011).
    [CrossRef]
  7. S. Kuiper and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004).
    [CrossRef]
  8. B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000).
    [CrossRef]
  9. C.-C. Cheng, C. A. Chang, and J. A. Yeh, Opt. Express 14, 4101 (2006).
    [CrossRef]
  10. J.-H. Chang and J. J. Pak, Sens. Actuators B 160, 1581 (2011).
    [CrossRef]
  11. J. M. Oh, S. H. Ko, and K. H. Kang, Phys. Fluids 22, 032002 (2010).
    [CrossRef]
  12. A. Quinn, R. Sedev, and J. Ralston, J. Phys. Chem. B 109, 6268 (2005).
    [CrossRef]

2011 (3)

A. Pouydebasque, C. Bridoux, F. Jacquet, S. Moreau, E. Sage, D. Saint-Patrice, C. Bouvier, C. Kopp, G. Marchand, S. Bolis, N. Sillon, and E. Vigier-Blanc, Sens. Actuators A 172, 280 (2011).
[CrossRef]

J.-H. Chang and J. J. Pak, Sens. Actuators B 160, 1581 (2011).
[CrossRef]

S. T. Choi, J. Y. Lee, J. O. Kwon, S. Lee, and W. Kim, Opt. Lett. 36, 1920 (2011).
[CrossRef]

2010 (1)

J. M. Oh, S. H. Ko, and K. H. Kang, Phys. Fluids 22, 032002 (2010).
[CrossRef]

2009 (1)

H. Oku and M. Ishikawa, Appl. Phys. Lett. 94, 221108 (2009).
[CrossRef]

2007 (1)

S. W. Lee and S. S. Lee, Appl. Phys. Lett. 90, 121129 (2007).
[CrossRef]

2006 (3)

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, Nature 442, 551 (2006).
[CrossRef]

W. Weisong and F. Ji, J. Micromech. Microeng. 16, 1221 (2006).
[CrossRef]

C.-C. Cheng, C. A. Chang, and J. A. Yeh, Opt. Express 14, 4101 (2006).
[CrossRef]

2005 (1)

A. Quinn, R. Sedev, and J. Ralston, J. Phys. Chem. B 109, 6268 (2005).
[CrossRef]

2004 (1)

S. Kuiper and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004).
[CrossRef]

2000 (1)

B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000).
[CrossRef]

Agarwal, A. K.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, Nature 442, 551 (2006).
[CrossRef]

Beebe, D. J.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, Nature 442, 551 (2006).
[CrossRef]

Berge, B.

B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000).
[CrossRef]

Bolis, S.

A. Pouydebasque, C. Bridoux, F. Jacquet, S. Moreau, E. Sage, D. Saint-Patrice, C. Bouvier, C. Kopp, G. Marchand, S. Bolis, N. Sillon, and E. Vigier-Blanc, Sens. Actuators A 172, 280 (2011).
[CrossRef]

Bouvier, C.

A. Pouydebasque, C. Bridoux, F. Jacquet, S. Moreau, E. Sage, D. Saint-Patrice, C. Bouvier, C. Kopp, G. Marchand, S. Bolis, N. Sillon, and E. Vigier-Blanc, Sens. Actuators A 172, 280 (2011).
[CrossRef]

Bridoux, C.

A. Pouydebasque, C. Bridoux, F. Jacquet, S. Moreau, E. Sage, D. Saint-Patrice, C. Bouvier, C. Kopp, G. Marchand, S. Bolis, N. Sillon, and E. Vigier-Blanc, Sens. Actuators A 172, 280 (2011).
[CrossRef]

Chang, C. A.

Chang, J.-H.

J.-H. Chang and J. J. Pak, Sens. Actuators B 160, 1581 (2011).
[CrossRef]

Cheng, C.-C.

Choi, S. T.

Dong, L.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, Nature 442, 551 (2006).
[CrossRef]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004).
[CrossRef]

Ishikawa, M.

H. Oku and M. Ishikawa, Appl. Phys. Lett. 94, 221108 (2009).
[CrossRef]

Jacquet, F.

A. Pouydebasque, C. Bridoux, F. Jacquet, S. Moreau, E. Sage, D. Saint-Patrice, C. Bouvier, C. Kopp, G. Marchand, S. Bolis, N. Sillon, and E. Vigier-Blanc, Sens. Actuators A 172, 280 (2011).
[CrossRef]

Ji, F.

W. Weisong and F. Ji, J. Micromech. Microeng. 16, 1221 (2006).
[CrossRef]

Jiang, H.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, Nature 442, 551 (2006).
[CrossRef]

Kang, K. H.

J. M. Oh, S. H. Ko, and K. H. Kang, Phys. Fluids 22, 032002 (2010).
[CrossRef]

Kim, W.

Ko, S. H.

J. M. Oh, S. H. Ko, and K. H. Kang, Phys. Fluids 22, 032002 (2010).
[CrossRef]

Kopp, C.

A. Pouydebasque, C. Bridoux, F. Jacquet, S. Moreau, E. Sage, D. Saint-Patrice, C. Bouvier, C. Kopp, G. Marchand, S. Bolis, N. Sillon, and E. Vigier-Blanc, Sens. Actuators A 172, 280 (2011).
[CrossRef]

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004).
[CrossRef]

Kwon, J. O.

Lee, J. Y.

Lee, S.

Lee, S. S.

S. W. Lee and S. S. Lee, Appl. Phys. Lett. 90, 121129 (2007).
[CrossRef]

Lee, S. W.

S. W. Lee and S. S. Lee, Appl. Phys. Lett. 90, 121129 (2007).
[CrossRef]

Marchand, G.

A. Pouydebasque, C. Bridoux, F. Jacquet, S. Moreau, E. Sage, D. Saint-Patrice, C. Bouvier, C. Kopp, G. Marchand, S. Bolis, N. Sillon, and E. Vigier-Blanc, Sens. Actuators A 172, 280 (2011).
[CrossRef]

Moreau, S.

A. Pouydebasque, C. Bridoux, F. Jacquet, S. Moreau, E. Sage, D. Saint-Patrice, C. Bouvier, C. Kopp, G. Marchand, S. Bolis, N. Sillon, and E. Vigier-Blanc, Sens. Actuators A 172, 280 (2011).
[CrossRef]

Oh, J. M.

J. M. Oh, S. H. Ko, and K. H. Kang, Phys. Fluids 22, 032002 (2010).
[CrossRef]

Oku, H.

H. Oku and M. Ishikawa, Appl. Phys. Lett. 94, 221108 (2009).
[CrossRef]

Pak, J. J.

J.-H. Chang and J. J. Pak, Sens. Actuators B 160, 1581 (2011).
[CrossRef]

Peseux, J.

B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000).
[CrossRef]

Pouydebasque, A.

A. Pouydebasque, C. Bridoux, F. Jacquet, S. Moreau, E. Sage, D. Saint-Patrice, C. Bouvier, C. Kopp, G. Marchand, S. Bolis, N. Sillon, and E. Vigier-Blanc, Sens. Actuators A 172, 280 (2011).
[CrossRef]

Quinn, A.

A. Quinn, R. Sedev, and J. Ralston, J. Phys. Chem. B 109, 6268 (2005).
[CrossRef]

Ralston, J.

A. Quinn, R. Sedev, and J. Ralston, J. Phys. Chem. B 109, 6268 (2005).
[CrossRef]

Sage, E.

A. Pouydebasque, C. Bridoux, F. Jacquet, S. Moreau, E. Sage, D. Saint-Patrice, C. Bouvier, C. Kopp, G. Marchand, S. Bolis, N. Sillon, and E. Vigier-Blanc, Sens. Actuators A 172, 280 (2011).
[CrossRef]

Saint-Patrice, D.

A. Pouydebasque, C. Bridoux, F. Jacquet, S. Moreau, E. Sage, D. Saint-Patrice, C. Bouvier, C. Kopp, G. Marchand, S. Bolis, N. Sillon, and E. Vigier-Blanc, Sens. Actuators A 172, 280 (2011).
[CrossRef]

Sedev, R.

A. Quinn, R. Sedev, and J. Ralston, J. Phys. Chem. B 109, 6268 (2005).
[CrossRef]

Sillon, N.

A. Pouydebasque, C. Bridoux, F. Jacquet, S. Moreau, E. Sage, D. Saint-Patrice, C. Bouvier, C. Kopp, G. Marchand, S. Bolis, N. Sillon, and E. Vigier-Blanc, Sens. Actuators A 172, 280 (2011).
[CrossRef]

Vigier-Blanc, E.

A. Pouydebasque, C. Bridoux, F. Jacquet, S. Moreau, E. Sage, D. Saint-Patrice, C. Bouvier, C. Kopp, G. Marchand, S. Bolis, N. Sillon, and E. Vigier-Blanc, Sens. Actuators A 172, 280 (2011).
[CrossRef]

Weisong, W.

W. Weisong and F. Ji, J. Micromech. Microeng. 16, 1221 (2006).
[CrossRef]

Yeh, J. A.

Appl. Phys. Lett. (3)

S. W. Lee and S. S. Lee, Appl. Phys. Lett. 90, 121129 (2007).
[CrossRef]

H. Oku and M. Ishikawa, Appl. Phys. Lett. 94, 221108 (2009).
[CrossRef]

S. Kuiper and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004).
[CrossRef]

Eur. Phys. J. E (1)

B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000).
[CrossRef]

J. Micromech. Microeng. (1)

W. Weisong and F. Ji, J. Micromech. Microeng. 16, 1221 (2006).
[CrossRef]

J. Phys. Chem. B (1)

A. Quinn, R. Sedev, and J. Ralston, J. Phys. Chem. B 109, 6268 (2005).
[CrossRef]

Nature (1)

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, Nature 442, 551 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Fluids (1)

J. M. Oh, S. H. Ko, and K. H. Kang, Phys. Fluids 22, 032002 (2010).
[CrossRef]

Sens. Actuators A (1)

A. Pouydebasque, C. Bridoux, F. Jacquet, S. Moreau, E. Sage, D. Saint-Patrice, C. Bouvier, C. Kopp, G. Marchand, S. Bolis, N. Sillon, and E. Vigier-Blanc, Sens. Actuators A 172, 280 (2011).
[CrossRef]

Sens. Actuators B (1)

J.-H. Chang and J. J. Pak, Sens. Actuators B 160, 1581 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the MEFL; (a) top and (b) cross-sectional views.

Fig. 2.
Fig. 2.

Schematic of the digital MEFL having concentric control electrodes.

Fig. 3.
Fig. 3.

Experimental results of the fabricated MEFL and the schematic cross-sections; TCL radii of (a) 1.8 mm, (b) 2.0 mm, (c) 2.3 mm, (d) 2.6 mm, (e) 2.9 mm, and (f) 3.2 mm.

Fig. 4.
Fig. 4.

Experimental and simulation results of time-dependent TCL position in the MEFL.

Fig. 5.
Fig. 5.

Sag height and optical power depending on the TCL radius in the MEFL.

Fig. 6.
Fig. 6.

Schematic cross sections of the MEFL for enlarging the optical power by lowering the channel height; (a) a larger surface channel and (b) multiple surface channels.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

PL=4γDcos(π2ϕ)=16γHD2+4H2,
PC=γ(cosθ1+cosθ2h1r)=γ(2cosθVh1r),
ΔP=PCPL=γ(16HD2+4H2+2cosθVh1r),

Metrics