Abstract

In a relatively simple setup consisting of a microchip laser as pump source and two hydrogen-filled hollow-core photonic crystal fibers, a broad, phase-locked, purely rotational frequency comb is generated. This is achieved by producing a clean first Stokes seed pulse in a narrowband guiding photonic bandgap fiber via stimulated Raman scattering and then driving the same Raman transition resonantly with a pump and Stokes fields in a second broadband guiding kagomé-style fiber. Using a spectral interferometric technique based on sum frequency generation, we show that the comb components are phase locked.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, J. Lightwave Technol. 24, 4729 (2006).
    [CrossRef]
  2. J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, J. Opt. Soc. Am. B 28, A11 (2011).
    [CrossRef]
  3. A. Abdolvand, A. Nazarkin, A. V. Chugreev, C. F. Kaminski, and P. St. J. Russell, Phys. Rev. Lett. 103, 183902 (2009).
    [CrossRef]
  4. A. Nazarkin, A. Abdolvand, A. V. Chugreev, and P. St. J. Russell, Phys. Rev. Lett. 105, 173902 (2010).
    [CrossRef]
  5. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002).
    [CrossRef]
  6. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
    [CrossRef]
  7. Y. Y. Wang, C. Wu, F. Couny, M. G. Raymer, and F. Benabid, Phys. Rev. Lett. 105, 123603 (2010).
    [CrossRef]
  8. H. S. Chan, Z. M. Hsieh, W. H. Liang, A. H. Kung, C. K. Lee, C. J. Lai, R. P. Pan, and L. H. Peng, Science 331, 1165 (2011).
    [CrossRef]
  9. S. Baker, I. A. Walmsley, J. W. G. Tisch, and J. P. Marangos, Nat. Photonics 5, 664 (2011).
    [CrossRef]
  10. A. V. Sokolov and S. E. Harris, J. Opt. B 5, R1 (2003).
    [CrossRef]
  11. T. Suzuki, N. Sawayama, and M. Katsuragawa, Opt. Lett. 33, 2809 (2008).
    [CrossRef]
  12. A. Nazarkin, A. Abdolvand, and P. St. J. Russell, Phys. Rev. A 79, 031805(R) (2009).
    [CrossRef]

2011 (3)

H. S. Chan, Z. M. Hsieh, W. H. Liang, A. H. Kung, C. K. Lee, C. J. Lai, R. P. Pan, and L. H. Peng, Science 331, 1165 (2011).
[CrossRef]

S. Baker, I. A. Walmsley, J. W. G. Tisch, and J. P. Marangos, Nat. Photonics 5, 664 (2011).
[CrossRef]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, J. Opt. Soc. Am. B 28, A11 (2011).
[CrossRef]

2010 (2)

Y. Y. Wang, C. Wu, F. Couny, M. G. Raymer, and F. Benabid, Phys. Rev. Lett. 105, 123603 (2010).
[CrossRef]

A. Nazarkin, A. Abdolvand, A. V. Chugreev, and P. St. J. Russell, Phys. Rev. Lett. 105, 173902 (2010).
[CrossRef]

2009 (2)

A. Abdolvand, A. Nazarkin, A. V. Chugreev, C. F. Kaminski, and P. St. J. Russell, Phys. Rev. Lett. 103, 183902 (2009).
[CrossRef]

A. Nazarkin, A. Abdolvand, and P. St. J. Russell, Phys. Rev. A 79, 031805(R) (2009).
[CrossRef]

2008 (1)

2007 (1)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
[CrossRef]

2006 (1)

2003 (1)

A. V. Sokolov and S. E. Harris, J. Opt. B 5, R1 (2003).
[CrossRef]

2002 (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002).
[CrossRef]

Abdolvand, A.

A. Nazarkin, A. Abdolvand, A. V. Chugreev, and P. St. J. Russell, Phys. Rev. Lett. 105, 173902 (2010).
[CrossRef]

A. Nazarkin, A. Abdolvand, and P. St. J. Russell, Phys. Rev. A 79, 031805(R) (2009).
[CrossRef]

A. Abdolvand, A. Nazarkin, A. V. Chugreev, C. F. Kaminski, and P. St. J. Russell, Phys. Rev. Lett. 103, 183902 (2009).
[CrossRef]

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002).
[CrossRef]

Baker, S.

S. Baker, I. A. Walmsley, J. W. G. Tisch, and J. P. Marangos, Nat. Photonics 5, 664 (2011).
[CrossRef]

Benabid, F.

Y. Y. Wang, C. Wu, F. Couny, M. G. Raymer, and F. Benabid, Phys. Rev. Lett. 105, 123603 (2010).
[CrossRef]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
[CrossRef]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002).
[CrossRef]

Chan, H. S.

H. S. Chan, Z. M. Hsieh, W. H. Liang, A. H. Kung, C. K. Lee, C. J. Lai, R. P. Pan, and L. H. Peng, Science 331, 1165 (2011).
[CrossRef]

Chang, W.

Chugreev, A. V.

A. Nazarkin, A. Abdolvand, A. V. Chugreev, and P. St. J. Russell, Phys. Rev. Lett. 105, 173902 (2010).
[CrossRef]

A. Abdolvand, A. Nazarkin, A. V. Chugreev, C. F. Kaminski, and P. St. J. Russell, Phys. Rev. Lett. 103, 183902 (2009).
[CrossRef]

Couny, F.

Y. Y. Wang, C. Wu, F. Couny, M. G. Raymer, and F. Benabid, Phys. Rev. Lett. 105, 123603 (2010).
[CrossRef]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
[CrossRef]

Harris, S. E.

A. V. Sokolov and S. E. Harris, J. Opt. B 5, R1 (2003).
[CrossRef]

Hsieh, Z. M.

H. S. Chan, Z. M. Hsieh, W. H. Liang, A. H. Kung, C. K. Lee, C. J. Lai, R. P. Pan, and L. H. Peng, Science 331, 1165 (2011).
[CrossRef]

Joly, N. Y.

Kaminski, C. F.

A. Abdolvand, A. Nazarkin, A. V. Chugreev, C. F. Kaminski, and P. St. J. Russell, Phys. Rev. Lett. 103, 183902 (2009).
[CrossRef]

Katsuragawa, M.

Knight, J. C.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002).
[CrossRef]

Kung, A. H.

H. S. Chan, Z. M. Hsieh, W. H. Liang, A. H. Kung, C. K. Lee, C. J. Lai, R. P. Pan, and L. H. Peng, Science 331, 1165 (2011).
[CrossRef]

Lai, C. J.

H. S. Chan, Z. M. Hsieh, W. H. Liang, A. H. Kung, C. K. Lee, C. J. Lai, R. P. Pan, and L. H. Peng, Science 331, 1165 (2011).
[CrossRef]

Lee, C. K.

H. S. Chan, Z. M. Hsieh, W. H. Liang, A. H. Kung, C. K. Lee, C. J. Lai, R. P. Pan, and L. H. Peng, Science 331, 1165 (2011).
[CrossRef]

Liang, W. H.

H. S. Chan, Z. M. Hsieh, W. H. Liang, A. H. Kung, C. K. Lee, C. J. Lai, R. P. Pan, and L. H. Peng, Science 331, 1165 (2011).
[CrossRef]

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
[CrossRef]

Marangos, J. P.

S. Baker, I. A. Walmsley, J. W. G. Tisch, and J. P. Marangos, Nat. Photonics 5, 664 (2011).
[CrossRef]

Nazarkin, A.

A. Nazarkin, A. Abdolvand, A. V. Chugreev, and P. St. J. Russell, Phys. Rev. Lett. 105, 173902 (2010).
[CrossRef]

A. Nazarkin, A. Abdolvand, and P. St. J. Russell, Phys. Rev. A 79, 031805(R) (2009).
[CrossRef]

A. Abdolvand, A. Nazarkin, A. V. Chugreev, C. F. Kaminski, and P. St. J. Russell, Phys. Rev. Lett. 103, 183902 (2009).
[CrossRef]

Nold, J.

Pan, R. P.

H. S. Chan, Z. M. Hsieh, W. H. Liang, A. H. Kung, C. K. Lee, C. J. Lai, R. P. Pan, and L. H. Peng, Science 331, 1165 (2011).
[CrossRef]

Peng, L. H.

H. S. Chan, Z. M. Hsieh, W. H. Liang, A. H. Kung, C. K. Lee, C. J. Lai, R. P. Pan, and L. H. Peng, Science 331, 1165 (2011).
[CrossRef]

Raymer, M. G.

Y. Y. Wang, C. Wu, F. Couny, M. G. Raymer, and F. Benabid, Phys. Rev. Lett. 105, 123603 (2010).
[CrossRef]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
[CrossRef]

Roberts, P. J.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
[CrossRef]

Russell, P. St. J.

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, J. Opt. Soc. Am. B 28, A11 (2011).
[CrossRef]

A. Nazarkin, A. Abdolvand, A. V. Chugreev, and P. St. J. Russell, Phys. Rev. Lett. 105, 173902 (2010).
[CrossRef]

A. Nazarkin, A. Abdolvand, and P. St. J. Russell, Phys. Rev. A 79, 031805(R) (2009).
[CrossRef]

A. Abdolvand, A. Nazarkin, A. V. Chugreev, C. F. Kaminski, and P. St. J. Russell, Phys. Rev. Lett. 103, 183902 (2009).
[CrossRef]

P. St. J. Russell, J. Lightwave Technol. 24, 4729 (2006).
[CrossRef]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002).
[CrossRef]

Sawayama, N.

Sokolov, A. V.

A. V. Sokolov and S. E. Harris, J. Opt. B 5, R1 (2003).
[CrossRef]

Suzuki, T.

Tisch, J. W. G.

S. Baker, I. A. Walmsley, J. W. G. Tisch, and J. P. Marangos, Nat. Photonics 5, 664 (2011).
[CrossRef]

Travers, J. C.

Walmsley, I. A.

S. Baker, I. A. Walmsley, J. W. G. Tisch, and J. P. Marangos, Nat. Photonics 5, 664 (2011).
[CrossRef]

Wang, Y. Y.

Y. Y. Wang, C. Wu, F. Couny, M. G. Raymer, and F. Benabid, Phys. Rev. Lett. 105, 123603 (2010).
[CrossRef]

Wu, C.

Y. Y. Wang, C. Wu, F. Couny, M. G. Raymer, and F. Benabid, Phys. Rev. Lett. 105, 123603 (2010).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. B (1)

A. V. Sokolov and S. E. Harris, J. Opt. B 5, R1 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

S. Baker, I. A. Walmsley, J. W. G. Tisch, and J. P. Marangos, Nat. Photonics 5, 664 (2011).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (1)

A. Nazarkin, A. Abdolvand, and P. St. J. Russell, Phys. Rev. A 79, 031805(R) (2009).
[CrossRef]

Phys. Rev. Lett. (3)

Y. Y. Wang, C. Wu, F. Couny, M. G. Raymer, and F. Benabid, Phys. Rev. Lett. 105, 123603 (2010).
[CrossRef]

A. Abdolvand, A. Nazarkin, A. V. Chugreev, C. F. Kaminski, and P. St. J. Russell, Phys. Rev. Lett. 103, 183902 (2009).
[CrossRef]

A. Nazarkin, A. Abdolvand, A. V. Chugreev, and P. St. J. Russell, Phys. Rev. Lett. 105, 173902 (2010).
[CrossRef]

Science (3)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, Science 298, 399 (2002).
[CrossRef]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
[CrossRef]

H. S. Chan, Z. M. Hsieh, W. H. Liang, A. H. Kung, C. K. Lee, C. J. Lai, R. P. Pan, and L. H. Peng, Science 331, 1165 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Schematic of the two-color pumping of a hydrogen-filled kagomé-PCF for generating a pure rotational frequency comb. The rotational Raman transition of hydrogen is resonantly driven by pump and first rotational Stokes seed (M, mirror; BS, beam splitter; DM, dichroic mirror). (b) A comparison between loss and transmission windows of a kagomé- and PBG-PCF. Although the transmission window of the PBG-PCF (grey shaded region) is narrower, it offers a much lower propagation loss. (c) A typical purely rotational frequency comb produced using this technique (solid purple line). The solid green line indicates the total (waveguide+gas) wavevector mismatch Δβ across the frequency comb.

Fig. 2.
Fig. 2.

(a) Schematic of the frequency doubling arrangement using a 5 mm thick BBO crystal. (b) Typical spectrum recorded by the spectrometer at a fixed tilt angle. (c) Photographs of the frequency-doubled signal for three different tilt angles of the BBO crystal. Apart from SH components, stable sum frequencies of different comb lines are generated as well.

Fig. 3.
Fig. 3.

(a) Schematic of the setup used for extracting phase information using spectral interferometry. (b) Sinusoidal modulation of the SF signal as a function of the delay τ measured for m=0 (beating of 2ω0 with ω1+ω+1), m=1 (beating of ω0+ω1 with itself), m=2 (beating of 2ω1 with ω0+ω2), and m=3 (beating of ω0+ω3 with ω1+ω2).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

SmnAnAmnei(ϕn+ϕmn),
ISFm(τ)|A0Amei(Ωτ+Δϕm)+A1Am+1|2=A02Am2+A12Am+12+2A0AmA1Am+1cos(Ωτ+Δϕm),

Metrics