Abstract

We convert a mid-infrared frequency comb to near-infrared wavelengths through sum-frequency generation with a 1.064μm CW laser in an aperiodically poled ZnO:LiNbO3 waveguide. Upconversion of light in the range of 2.54.5μm to 0.760.86μm is demonstrated in a single device, and the efficiency of the conversion is measured across this bandwidth. We additionally characterize the spatial mode of the upconverted light. We then use this upconversion technique to detect and resolve individual lines from a methane gas sample with a common near-infrared optical spectrum analyzer. The stability of the spectrum of the upconverted light is analyzed with the goal of evaluating this technique for precise spectroscopic measurements.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Keilmann, C. Gohle, and R. Holzwarth, Opt. Lett. 29, 1542 (2004).
    [CrossRef]
  2. F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, Opt. Express 18, 21861 (2010).
    [CrossRef]
  3. F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, Ann. Rev. Anal. Chem. 3, 175 (2010).
    [CrossRef]
  4. B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. Sorokina, N. Picqué, and T. Hänsch, App. Phys. B 100, 3 (2010).
    [CrossRef]
  5. T. Johnson and S. Diddams, Appl. Phys. B 107, 31 (2012).
    [CrossRef]
  6. E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, Phys. Rev. A 84, 062513 (2011).
    [CrossRef]
  7. L. N. Glandorf, T. Neely, F. Adler, A. J. Fleisher, K. C. Cossel, B. Bjork, T. Dinneen, J. Ye, and S. A. Diddams, Opt. Lett. 37, 3285 (2012).
  8. E. J. Heilwell, Opt. Lett. 14, 551 (1989).
    [CrossRef]
  9. K. J. Kubarych, M. Joffre, A. Moore, N. Belabas, and D. M. Jonas, Opt. Lett. 30, 1228 (2005).
    [CrossRef]
  10. C. R. Baiz and K. J. Kubarych, Opt. Lett. 36, 187 (2011).
    [CrossRef]
  11. G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, J. Opt. Soc. Am. B 17, 304 (2000).
    [CrossRef]
  12. H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, Phys. Rev. A 78, 063821 (2008).
    [CrossRef]
  13. H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, Opt. Express 17, 12731 (2009).
    [CrossRef]
  14. Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, Electron. Lett. 39, 609 (2003).
    [CrossRef]
  15. L. Nugent-Glandorf, T. A. Johnson, Y. Kobayashi, and S. A. Diddams, Opt. Lett. 36, 1578 (2011).
    [CrossRef]
  16. F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, Opt. Lett. 34, 1330 (2009).
    [CrossRef]
  17. M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, J. Opt. Soc. Am. B 25, 463 (2008).
    [CrossRef]
  18. C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, Opt. Express 20, 18066 (2012).
    [CrossRef]

2012

2011

L. Nugent-Glandorf, T. A. Johnson, Y. Kobayashi, and S. A. Diddams, Opt. Lett. 36, 1578 (2011).
[CrossRef]

C. R. Baiz and K. J. Kubarych, Opt. Lett. 36, 187 (2011).
[CrossRef]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, Phys. Rev. A 84, 062513 (2011).
[CrossRef]

2010

F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, Opt. Express 18, 21861 (2010).
[CrossRef]

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, Ann. Rev. Anal. Chem. 3, 175 (2010).
[CrossRef]

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. Sorokina, N. Picqué, and T. Hänsch, App. Phys. B 100, 3 (2010).
[CrossRef]

2009

2008

M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, J. Opt. Soc. Am. B 25, 463 (2008).
[CrossRef]

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, Phys. Rev. A 78, 063821 (2008).
[CrossRef]

2005

2004

2003

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, Electron. Lett. 39, 609 (2003).
[CrossRef]

2000

1989

Adler, F.

Afeyan, B.

Arbore, M. A.

Arie, A.

H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, Opt. Express 17, 12731 (2009).
[CrossRef]

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, Phys. Rev. A 78, 063821 (2008).
[CrossRef]

Asobe, M.

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, Electron. Lett. 39, 609 (2003).
[CrossRef]

Baiz, C. R.

Baumann, E.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, Phys. Rev. A 84, 062513 (2011).
[CrossRef]

Becker, T.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. Sorokina, N. Picqué, and T. Hänsch, App. Phys. B 100, 3 (2010).
[CrossRef]

Belabas, N.

Bernhardt, B.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. Sorokina, N. Picqué, and T. Hänsch, App. Phys. B 100, 3 (2010).
[CrossRef]

Bjork, B.

Briles, T. C.

Charbonneau-Lefort, M.

Coddington, I.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, Phys. Rev. A 84, 062513 (2011).
[CrossRef]

Cossel, K. C.

Diddams, S.

T. Johnson and S. Diddams, Appl. Phys. B 107, 31 (2012).
[CrossRef]

Diddams, S. A.

Dinneen, T.

Fejer, M. M.

Fermann, M.

Fermann, M. E.

Fleisher, A. J.

Foltynowicz, A.

Gallmann, L.

Galvanauskas, A.

Giorgetta, F. R.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, Phys. Rev. A 84, 062513 (2011).
[CrossRef]

Glandorf, L. N.

Gohle, C.

Hänsch, T.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. Sorokina, N. Picqué, and T. Hänsch, App. Phys. B 100, 3 (2010).
[CrossRef]

Harter, D.

Hartl, I.

Heese, C.

Heilwell, E. J.

Holzwarth, R.

Imeshev, G.

Jacquet, P.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. Sorokina, N. Picqué, and T. Hänsch, App. Phys. B 100, 3 (2010).
[CrossRef]

Joffre, M.

Johnson, T.

T. Johnson and S. Diddams, Appl. Phys. B 107, 31 (2012).
[CrossRef]

Johnson, T. A.

Jonas, D. M.

Keilmann, F.

Keller, U.

Kobayashi, Y.

Kubarych, K. J.

Maslowski, P.

Miyazawa, H.

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, Electron. Lett. 39, 609 (2003).
[CrossRef]

Moore, A.

Neely, T.

Newbury, N. R.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, Phys. Rev. A 84, 062513 (2011).
[CrossRef]

Nishida, Y.

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, Electron. Lett. 39, 609 (2003).
[CrossRef]

Nugent-Glandorf, L.

Oron, D.

H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, Opt. Express 17, 12731 (2009).
[CrossRef]

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, Phys. Rev. A 78, 063821 (2008).
[CrossRef]

Phillips, C. R.

Picqué, N.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. Sorokina, N. Picqué, and T. Hänsch, App. Phys. B 100, 3 (2010).
[CrossRef]

Prabhudesai, V.

Silberberg, Y.

H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, Opt. Express 17, 12731 (2009).
[CrossRef]

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, Phys. Rev. A 78, 063821 (2008).
[CrossRef]

Sorokin, E.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. Sorokina, N. Picqué, and T. Hänsch, App. Phys. B 100, 3 (2010).
[CrossRef]

Sorokina, I.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. Sorokina, N. Picqué, and T. Hänsch, App. Phys. B 100, 3 (2010).
[CrossRef]

Suchowski, H.

H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, Opt. Express 17, 12731 (2009).
[CrossRef]

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, Phys. Rev. A 78, 063821 (2008).
[CrossRef]

Suzuki, H.

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, Electron. Lett. 39, 609 (2003).
[CrossRef]

Swann, W. C.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, Phys. Rev. A 84, 062513 (2011).
[CrossRef]

Tadanaga, O.

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, Electron. Lett. 39, 609 (2003).
[CrossRef]

Thon, R.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. Sorokina, N. Picqué, and T. Hänsch, App. Phys. B 100, 3 (2010).
[CrossRef]

Thorpe, M. J.

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, Ann. Rev. Anal. Chem. 3, 175 (2010).
[CrossRef]

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, Opt. Lett. 34, 1330 (2009).
[CrossRef]

Ye, J.

Zolot, A. M.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, Phys. Rev. A 84, 062513 (2011).
[CrossRef]

Ann. Rev. Anal. Chem.

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, Ann. Rev. Anal. Chem. 3, 175 (2010).
[CrossRef]

App. Phys. B

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. Sorokina, N. Picqué, and T. Hänsch, App. Phys. B 100, 3 (2010).
[CrossRef]

Appl. Phys. B

T. Johnson and S. Diddams, Appl. Phys. B 107, 31 (2012).
[CrossRef]

Electron. Lett.

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, Electron. Lett. 39, 609 (2003).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Phys. Rev. A

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, Phys. Rev. A 84, 062513 (2011).
[CrossRef]

H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, Phys. Rev. A 78, 063821 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Amplified Yb:fiber OPO laser system is used to generate tunable MIR light tunable from 2.5 to 4.5 μm . The MIR light is combined with a CW 1064 nm Nd:YAG laser in an aperiodically poled LiNbO 3 waveguide (aPPLN). After a short-pass filter, the upconverted light is coupled into a single-mode fiber and sent to an optical spectrum analyzer (OSA). The MIR spectrum is recorded using a monochromator and InSb photodiode via insertion of a flip mirror (FM) in the beam path.

Fig. 2.
Fig. 2.

Broadband MIR light upconverted in a waveguide aPPLN. (a) Concatenated OPO spectrum (red top curve), and corresponding sum frequency spectrum (blue middle curve) converted to MIR wavelengths. Calculated conversion efficiency (black) of the waveguide aPPLN, relative to the coupled pump power. (b) Schematic of the upconversion waveguide chip. The waveguide consists of ZnO-doped LiNbO 3 on a lithium-tantalate (LT) substrate, with linearly chirped poling periods (chirp exaggerated for clarity). (c) Output collimated upconverted mode profile.

Fig. 3.
Fig. 3.

(a) NIR background spectrum (solid curve) and NIR spectrum with methane in the cell (dashed) measured using the OSA (2 s sweep time, 0.05 nm resolution). (b) Recovered methane spectrum with HITRAN line-center comparison.

Fig. 4.
Fig. 4.

Stability measurements, for a single OPO tuning point. (a) (red, blue-dashed) Two consecutive upconverted spectra showing a repeatable structure, and (gray fill) the spectrum including only points above 5% of the peak value. As seen in the Figure, these spectra are virtually indistinguishable. (b) Absorbance residuals resulting from the division of the red and blue subsequent spectra in (a). (c) Effect of averaging on both the upconverted spectrum over the full window (red squares), data with the 5% threshold (blue triangles). The dashed lines represent fits to a N 1 / 2 dependence.

Metrics