Abstract

Passive terahertz (THz) setups require optical elements with large diameters for optimal harvesting of weak signals. High f-number implies sophisticated aspheric designs to ensure optimal resolution and good energetic efficiency. Trial and error testing of such optics is expensive and numerical modeling is time consuming; hence, we propose extremely cheap diffractive lenses for THz made of regular paper. They are easy to manufacture even with large diameters, and the optical function can be easily customized, which can be used for initial experimental testing of THz setups. Characterization of the proposed diffractive lenses with time-domain spectroscopy is presented and discussed.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Marron, D. K. Angell, and A. M. Tai, Proc. SPIE 1211, 62 (1990).
    [CrossRef]
  2. M. Sypek, M. Makowski, E. Hérault, A. M. Siemion, A. Siemion, J. Suszek, F. Garet, and J.-L. Coutaz, Opt. Lett. 37, 2214 (2012).
    [CrossRef]
  3. M. Sypek, J.-L. Coutaz, A. Kolodziejczyk, M. Makowski, and J. Suszek, Proc. SPIE 8261, 826110 (2012).
    [CrossRef]
  4. E. Hérault, J.-L. Coutaz, A. M. Siemion, A. Siemion, M. Makowski, and M. Sypek, J. Infrared Millim. Terahertz Waves 32, 403 (2011).
    [CrossRef]
  5. B. Scherger, M. Scheller, C. Jansen, M. Koch, and K. Wiesauer, Appl. Opt. 50, 2256 (2011).
    [CrossRef]
  6. S. Busch, B. Scherger, M. Scheller, and M. Koch, Opt. Lett. 37, 1391 (2012).
    [CrossRef]
  7. B. Scherger, C. Jördens, and M. Koch, Opt. Express 19, 4528 (2011).
    [CrossRef]
  8. M. Sypek, Opt. Commun. 116, 43 (1995).
    [CrossRef]
  9. B. Scherger, M. Scheller, N. Vieweg, S. T. Cundiff, and M. Koch, Opt. Express 19, 24884 (2011).
    [CrossRef]

2012 (3)

2011 (4)

1995 (1)

M. Sypek, Opt. Commun. 116, 43 (1995).
[CrossRef]

1990 (1)

J. C. Marron, D. K. Angell, and A. M. Tai, Proc. SPIE 1211, 62 (1990).
[CrossRef]

Angell, D. K.

J. C. Marron, D. K. Angell, and A. M. Tai, Proc. SPIE 1211, 62 (1990).
[CrossRef]

Busch, S.

Coutaz, J.-L.

M. Sypek, M. Makowski, E. Hérault, A. M. Siemion, A. Siemion, J. Suszek, F. Garet, and J.-L. Coutaz, Opt. Lett. 37, 2214 (2012).
[CrossRef]

M. Sypek, J.-L. Coutaz, A. Kolodziejczyk, M. Makowski, and J. Suszek, Proc. SPIE 8261, 826110 (2012).
[CrossRef]

E. Hérault, J.-L. Coutaz, A. M. Siemion, A. Siemion, M. Makowski, and M. Sypek, J. Infrared Millim. Terahertz Waves 32, 403 (2011).
[CrossRef]

Cundiff, S. T.

Garet, F.

Hérault, E.

M. Sypek, M. Makowski, E. Hérault, A. M. Siemion, A. Siemion, J. Suszek, F. Garet, and J.-L. Coutaz, Opt. Lett. 37, 2214 (2012).
[CrossRef]

E. Hérault, J.-L. Coutaz, A. M. Siemion, A. Siemion, M. Makowski, and M. Sypek, J. Infrared Millim. Terahertz Waves 32, 403 (2011).
[CrossRef]

Jansen, C.

Jördens, C.

Koch, M.

Kolodziejczyk, A.

M. Sypek, J.-L. Coutaz, A. Kolodziejczyk, M. Makowski, and J. Suszek, Proc. SPIE 8261, 826110 (2012).
[CrossRef]

Makowski, M.

M. Sypek, J.-L. Coutaz, A. Kolodziejczyk, M. Makowski, and J. Suszek, Proc. SPIE 8261, 826110 (2012).
[CrossRef]

M. Sypek, M. Makowski, E. Hérault, A. M. Siemion, A. Siemion, J. Suszek, F. Garet, and J.-L. Coutaz, Opt. Lett. 37, 2214 (2012).
[CrossRef]

E. Hérault, J.-L. Coutaz, A. M. Siemion, A. Siemion, M. Makowski, and M. Sypek, J. Infrared Millim. Terahertz Waves 32, 403 (2011).
[CrossRef]

Marron, J. C.

J. C. Marron, D. K. Angell, and A. M. Tai, Proc. SPIE 1211, 62 (1990).
[CrossRef]

Scheller, M.

Scherger, B.

Siemion, A.

M. Sypek, M. Makowski, E. Hérault, A. M. Siemion, A. Siemion, J. Suszek, F. Garet, and J.-L. Coutaz, Opt. Lett. 37, 2214 (2012).
[CrossRef]

E. Hérault, J.-L. Coutaz, A. M. Siemion, A. Siemion, M. Makowski, and M. Sypek, J. Infrared Millim. Terahertz Waves 32, 403 (2011).
[CrossRef]

Siemion, A. M.

M. Sypek, M. Makowski, E. Hérault, A. M. Siemion, A. Siemion, J. Suszek, F. Garet, and J.-L. Coutaz, Opt. Lett. 37, 2214 (2012).
[CrossRef]

E. Hérault, J.-L. Coutaz, A. M. Siemion, A. Siemion, M. Makowski, and M. Sypek, J. Infrared Millim. Terahertz Waves 32, 403 (2011).
[CrossRef]

Suszek, J.

M. Sypek, M. Makowski, E. Hérault, A. M. Siemion, A. Siemion, J. Suszek, F. Garet, and J.-L. Coutaz, Opt. Lett. 37, 2214 (2012).
[CrossRef]

M. Sypek, J.-L. Coutaz, A. Kolodziejczyk, M. Makowski, and J. Suszek, Proc. SPIE 8261, 826110 (2012).
[CrossRef]

Sypek, M.

M. Sypek, J.-L. Coutaz, A. Kolodziejczyk, M. Makowski, and J. Suszek, Proc. SPIE 8261, 826110 (2012).
[CrossRef]

M. Sypek, M. Makowski, E. Hérault, A. M. Siemion, A. Siemion, J. Suszek, F. Garet, and J.-L. Coutaz, Opt. Lett. 37, 2214 (2012).
[CrossRef]

E. Hérault, J.-L. Coutaz, A. M. Siemion, A. Siemion, M. Makowski, and M. Sypek, J. Infrared Millim. Terahertz Waves 32, 403 (2011).
[CrossRef]

M. Sypek, Opt. Commun. 116, 43 (1995).
[CrossRef]

Tai, A. M.

J. C. Marron, D. K. Angell, and A. M. Tai, Proc. SPIE 1211, 62 (1990).
[CrossRef]

Vieweg, N.

Wiesauer, K.

Appl. Opt. (1)

J. Infrared Millim. Terahertz Waves (1)

E. Hérault, J.-L. Coutaz, A. M. Siemion, A. Siemion, M. Makowski, and M. Sypek, J. Infrared Millim. Terahertz Waves 32, 403 (2011).
[CrossRef]

Opt. Commun. (1)

M. Sypek, Opt. Commun. 116, 43 (1995).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Proc. SPIE (2)

M. Sypek, J.-L. Coutaz, A. Kolodziejczyk, M. Makowski, and J. Suszek, Proc. SPIE 8261, 826110 (2012).
[CrossRef]

J. C. Marron, D. K. Angell, and A. M. Tai, Proc. SPIE 1211, 62 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Paper lenses: (a) classic paraxial design and (b) nonparaxial design. Exemplary illuminated region marked with a circle.

Fig. 2.
Fig. 2.

Absorption (dashed curves) and refractive indices (solid curves) of two types of paper. “Green” paper shown in grey.

Fig. 3.
Fig. 3.

Experimental goniometric TDS setup.

Fig. 4.
Fig. 4.

Experimental quasi ray tracing of paper lens for 0.26 THz with (a) classic design and (b) nonparaxial design. Each line represents a ray.

Fig. 5.
Fig. 5.

Experimental results of the angular TDS scan of nonparaxial lens in the goniometric setup. The graph shows the intensity (colors) versus frequency and position of the illuminated section of the lens measured from its center. Design frequency (0.26 THz) and twice that (0.52 THz) are marked in red.

Fig. 6.
Fig. 6.

Diffractive efficiency of the “green” paper lens with the illuminated area 40 mm off its center. The theoretical maximal level is 40.4%.

Fig. 7.
Fig. 7.

Numerical simulation results of the angular scan in the virtual goniometric setup.

Fig. 8.
Fig. 8.

Field intensity for different angles at 0.26 THz.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

φ=exp(ikr2/2f),
φ=exp(ikr2+f2),

Metrics