Abstract

Oblique-angle deposited titanium dioxide (TiO2) nanorods have attracted much attention as good antireflection (AR) coating material due to their low n profile. Therefore, it is necessary to better understand the optical properties of these nanorods. TiO2 nanorods grown on glass and Si substrates were characterized in the visible (0.4–0.8 μm) and infrared (2–12 μm) regions to extract their complex n profiles empirically. Application of these nanorods in multilayer AR coatings on infrared detectors is also discussed. Optimization of graded index profile of these AR coatings in the broad infrared region (2–12 μm) even at oblique angles of incidence is discussed. The effective coupling between the incoming light and multiple nanorod layers for reducing the reflection is obtained by optimizing the effect from Fabry–Perot oscillations. An optimized five-layer AR coating on GaN shows the reflectance less than 3.3% for normal incidence and 10.5% at 60° across the whole 2–8 μm spectral range.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, S.-Y. Chen, M. Lin, W. Liu, and J. A. Smart, Nat. Photonics 1, 176 (2007).
    [CrossRef]
  2. H. Zhu, W. Cao, G. K. Larsen, R. Toole, and Y. P. Zhao, J. Vac. Sci. Technol. B 30, 030606 (2012).
    [CrossRef]
  3. R. Messier, V. Venugopal, and P. Sunal, J. Vac. Sci. Technol. A 18, 1538 (2000).
    [CrossRef]
  4. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge Univ., 1999).
  5. Y. C. A. Djurisic and E. H. Li, Mater. Sci. Eng., R 38, 237 (2002).
    [CrossRef]
  6. M. Bass, C. DeCusatis, J. Enoch, G. Li, V. N. Mahajan, V. Lakshminarayanan, E. V. Stryland, and C. MacDonald, Handbook of Optics, 3rd ed. (McGraw-Hill, 2009).
  7. R. C. Jayasinghe, G. Ariyawansa, N. Dietz, A. G. U. Perera, S. G. Matsik, H. B. Yu, I. T. Ferguson, A. Bezinger, S. R. Laframboise, M. Buchanan, and H. C. Liu, Opt. Lett. 33, 2422 (2008).
    [CrossRef]
  8. W. H. Southwell, Opt. Lett. 8, 584 (1983).
    [CrossRef]
  9. New semiconductor materials, available at http://www.ioffe.ru/SVA/NSM/ .
  10. S. Martin, J. Rivory, and M. Schoenauer, Appl. Opt. 34, 2247 (1995).
    [CrossRef]
  11. M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, Opt. Express 16, 5290 (2008).
    [CrossRef]
  12. J. P. Singh, H. Chu, J. Abell, R. A. Tripp, and Y. Zhao, Nanoscale 4, 3410 (2012).
    [CrossRef]
  13. D. J. Poxson, F. W. Mont, M. F. Schubert, J. K. Kim, and E. F. Schubert, Appl. Phys. Lett. 93, 101914 (2008).
    [CrossRef]

2012 (2)

H. Zhu, W. Cao, G. K. Larsen, R. Toole, and Y. P. Zhao, J. Vac. Sci. Technol. B 30, 030606 (2012).
[CrossRef]

J. P. Singh, H. Chu, J. Abell, R. A. Tripp, and Y. Zhao, Nanoscale 4, 3410 (2012).
[CrossRef]

2008 (3)

2007 (1)

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, S.-Y. Chen, M. Lin, W. Liu, and J. A. Smart, Nat. Photonics 1, 176 (2007).
[CrossRef]

2002 (1)

Y. C. A. Djurisic and E. H. Li, Mater. Sci. Eng., R 38, 237 (2002).
[CrossRef]

2000 (1)

R. Messier, V. Venugopal, and P. Sunal, J. Vac. Sci. Technol. A 18, 1538 (2000).
[CrossRef]

1995 (1)

1983 (1)

Abell, J.

J. P. Singh, H. Chu, J. Abell, R. A. Tripp, and Y. Zhao, Nanoscale 4, 3410 (2012).
[CrossRef]

Ariyawansa, G.

Bass, M.

M. Bass, C. DeCusatis, J. Enoch, G. Li, V. N. Mahajan, V. Lakshminarayanan, E. V. Stryland, and C. MacDonald, Handbook of Optics, 3rd ed. (McGraw-Hill, 2009).

Bezinger, A.

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge Univ., 1999).

Buchanan, M.

Cao, W.

H. Zhu, W. Cao, G. K. Larsen, R. Toole, and Y. P. Zhao, J. Vac. Sci. Technol. B 30, 030606 (2012).
[CrossRef]

Chen, S.-Y.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, S.-Y. Chen, M. Lin, W. Liu, and J. A. Smart, Nat. Photonics 1, 176 (2007).
[CrossRef]

Chhajed, S.

Chu, H.

J. P. Singh, H. Chu, J. Abell, R. A. Tripp, and Y. Zhao, Nanoscale 4, 3410 (2012).
[CrossRef]

DeCusatis, C.

M. Bass, C. DeCusatis, J. Enoch, G. Li, V. N. Mahajan, V. Lakshminarayanan, E. V. Stryland, and C. MacDonald, Handbook of Optics, 3rd ed. (McGraw-Hill, 2009).

Dietz, N.

Djurisic, Y. C. A.

Y. C. A. Djurisic and E. H. Li, Mater. Sci. Eng., R 38, 237 (2002).
[CrossRef]

Enoch, J.

M. Bass, C. DeCusatis, J. Enoch, G. Li, V. N. Mahajan, V. Lakshminarayanan, E. V. Stryland, and C. MacDonald, Handbook of Optics, 3rd ed. (McGraw-Hill, 2009).

Ferguson, I. T.

Jayasinghe, R. C.

Kim, J. K.

M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, Opt. Express 16, 5290 (2008).
[CrossRef]

D. J. Poxson, F. W. Mont, M. F. Schubert, J. K. Kim, and E. F. Schubert, Appl. Phys. Lett. 93, 101914 (2008).
[CrossRef]

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, S.-Y. Chen, M. Lin, W. Liu, and J. A. Smart, Nat. Photonics 1, 176 (2007).
[CrossRef]

Laframboise, S. R.

Lakshminarayanan, V.

M. Bass, C. DeCusatis, J. Enoch, G. Li, V. N. Mahajan, V. Lakshminarayanan, E. V. Stryland, and C. MacDonald, Handbook of Optics, 3rd ed. (McGraw-Hill, 2009).

Larsen, G. K.

H. Zhu, W. Cao, G. K. Larsen, R. Toole, and Y. P. Zhao, J. Vac. Sci. Technol. B 30, 030606 (2012).
[CrossRef]

Li, E. H.

Y. C. A. Djurisic and E. H. Li, Mater. Sci. Eng., R 38, 237 (2002).
[CrossRef]

Li, G.

M. Bass, C. DeCusatis, J. Enoch, G. Li, V. N. Mahajan, V. Lakshminarayanan, E. V. Stryland, and C. MacDonald, Handbook of Optics, 3rd ed. (McGraw-Hill, 2009).

Lin, M.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, S.-Y. Chen, M. Lin, W. Liu, and J. A. Smart, Nat. Photonics 1, 176 (2007).
[CrossRef]

Liu, H. C.

Liu, W.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, S.-Y. Chen, M. Lin, W. Liu, and J. A. Smart, Nat. Photonics 1, 176 (2007).
[CrossRef]

MacDonald, C.

M. Bass, C. DeCusatis, J. Enoch, G. Li, V. N. Mahajan, V. Lakshminarayanan, E. V. Stryland, and C. MacDonald, Handbook of Optics, 3rd ed. (McGraw-Hill, 2009).

Mahajan, V. N.

M. Bass, C. DeCusatis, J. Enoch, G. Li, V. N. Mahajan, V. Lakshminarayanan, E. V. Stryland, and C. MacDonald, Handbook of Optics, 3rd ed. (McGraw-Hill, 2009).

Martin, S.

Matsik, S. G.

Messier, R.

R. Messier, V. Venugopal, and P. Sunal, J. Vac. Sci. Technol. A 18, 1538 (2000).
[CrossRef]

Mont, F. W.

M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, Opt. Express 16, 5290 (2008).
[CrossRef]

D. J. Poxson, F. W. Mont, M. F. Schubert, J. K. Kim, and E. F. Schubert, Appl. Phys. Lett. 93, 101914 (2008).
[CrossRef]

Perera, A. G. U.

Poxson, D. J.

D. J. Poxson, F. W. Mont, M. F. Schubert, J. K. Kim, and E. F. Schubert, Appl. Phys. Lett. 93, 101914 (2008).
[CrossRef]

M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, Opt. Express 16, 5290 (2008).
[CrossRef]

Rivory, J.

Schoenauer, M.

Schubert, E. F.

M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, Opt. Express 16, 5290 (2008).
[CrossRef]

D. J. Poxson, F. W. Mont, M. F. Schubert, J. K. Kim, and E. F. Schubert, Appl. Phys. Lett. 93, 101914 (2008).
[CrossRef]

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, S.-Y. Chen, M. Lin, W. Liu, and J. A. Smart, Nat. Photonics 1, 176 (2007).
[CrossRef]

Schubert, M. F.

D. J. Poxson, F. W. Mont, M. F. Schubert, J. K. Kim, and E. F. Schubert, Appl. Phys. Lett. 93, 101914 (2008).
[CrossRef]

M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, Opt. Express 16, 5290 (2008).
[CrossRef]

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, S.-Y. Chen, M. Lin, W. Liu, and J. A. Smart, Nat. Photonics 1, 176 (2007).
[CrossRef]

Singh, J. P.

J. P. Singh, H. Chu, J. Abell, R. A. Tripp, and Y. Zhao, Nanoscale 4, 3410 (2012).
[CrossRef]

Smart, J. A.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, S.-Y. Chen, M. Lin, W. Liu, and J. A. Smart, Nat. Photonics 1, 176 (2007).
[CrossRef]

Southwell, W. H.

Stryland, E. V.

M. Bass, C. DeCusatis, J. Enoch, G. Li, V. N. Mahajan, V. Lakshminarayanan, E. V. Stryland, and C. MacDonald, Handbook of Optics, 3rd ed. (McGraw-Hill, 2009).

Sunal, P.

R. Messier, V. Venugopal, and P. Sunal, J. Vac. Sci. Technol. A 18, 1538 (2000).
[CrossRef]

Toole, R.

H. Zhu, W. Cao, G. K. Larsen, R. Toole, and Y. P. Zhao, J. Vac. Sci. Technol. B 30, 030606 (2012).
[CrossRef]

Tripp, R. A.

J. P. Singh, H. Chu, J. Abell, R. A. Tripp, and Y. Zhao, Nanoscale 4, 3410 (2012).
[CrossRef]

Venugopal, V.

R. Messier, V. Venugopal, and P. Sunal, J. Vac. Sci. Technol. A 18, 1538 (2000).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge Univ., 1999).

Xi, J.-Q.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, S.-Y. Chen, M. Lin, W. Liu, and J. A. Smart, Nat. Photonics 1, 176 (2007).
[CrossRef]

Yu, H. B.

Zhao, Y.

J. P. Singh, H. Chu, J. Abell, R. A. Tripp, and Y. Zhao, Nanoscale 4, 3410 (2012).
[CrossRef]

Zhao, Y. P.

H. Zhu, W. Cao, G. K. Larsen, R. Toole, and Y. P. Zhao, J. Vac. Sci. Technol. B 30, 030606 (2012).
[CrossRef]

Zhu, H.

H. Zhu, W. Cao, G. K. Larsen, R. Toole, and Y. P. Zhao, J. Vac. Sci. Technol. B 30, 030606 (2012).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. J. Poxson, F. W. Mont, M. F. Schubert, J. K. Kim, and E. F. Schubert, Appl. Phys. Lett. 93, 101914 (2008).
[CrossRef]

J. Vac. Sci. Technol. A (1)

R. Messier, V. Venugopal, and P. Sunal, J. Vac. Sci. Technol. A 18, 1538 (2000).
[CrossRef]

J. Vac. Sci. Technol. B (1)

H. Zhu, W. Cao, G. K. Larsen, R. Toole, and Y. P. Zhao, J. Vac. Sci. Technol. B 30, 030606 (2012).
[CrossRef]

Mater. Sci. Eng., R (1)

Y. C. A. Djurisic and E. H. Li, Mater. Sci. Eng., R 38, 237 (2002).
[CrossRef]

Nanoscale (1)

J. P. Singh, H. Chu, J. Abell, R. A. Tripp, and Y. Zhao, Nanoscale 4, 3410 (2012).
[CrossRef]

Nat. Photonics (1)

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, S.-Y. Chen, M. Lin, W. Liu, and J. A. Smart, Nat. Photonics 1, 176 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Other (3)

New semiconductor materials, available at http://www.ioffe.ru/SVA/NSM/ .

M. Bass, C. DeCusatis, J. Enoch, G. Li, V. N. Mahajan, V. Lakshminarayanan, E. V. Stryland, and C. MacDonald, Handbook of Optics, 3rd ed. (McGraw-Hill, 2009).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge Univ., 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Transmittance spectra of single layer TiO 2 nanorod films deposited at different vapor flux angles ( ϕ f ). The transmission increases with increase of deposition angle. Comparison of experimental transmission data with calculations for ϕ f of (a), (b) 75° and (c) 65° on glass substrate.

Fig. 2.
Fig. 2.

(a) Real ( n ) and (b) imaginary ( k ) parts of n determined by matching the FP peaks at different wavelengths. The dots represent the value at each FP peak. The best fit line was used to find the values at intermediate wavelengths. Imaginary part is the same for both the samples.

Fig. 3.
Fig. 3.

Comparison of experimental reflection spectra with calculations for a TiO 2 nanorod film deposited at ϕ f = 75 ° on Si substrate. Here, s -polarized component ( E s ) increases with increasing incident angle while E p decreases.

Fig. 4.
Fig. 4.

Refractive index obtained for a TiO 2 nanorod layer grown on Si. The dots represent the values found at FP peak positions. The dotted and dashed curves show the corresponding Sellmeier equation obtained by least-square fitting.

Fig. 5.
Fig. 5.

Reflection from five-layer AR coating structures (on GaN substrate) at oblique angles of incidence. For clarity, the curves for incident angles of 10° and 20° are not shown as they are very close to the curves for 0°. The inset shows the graded refractive index ( n ) profile of the AR coating from air to GaN ( n GaN = 2.3 ) with thickness ( d i ) of each layer.

Tables (1)

Tables Icon

Table 1. Sellmeier Coefficients for S - and P -Polarized Light [from Eq. (1)] as Determined from Least-Squares Fit to the Experimental Data Points as Shown in Fig. 4a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n 2 ( λ ) = A + B λ 2 λ 2 C 2 .

Metrics