Abstract

A modified illumination-based method has been proposed to improve resolution of a confocal line-scanning system by 20%. Phase-only apodization is applied to the illumination and combined with confocal detection. The method was studied both theoretically and experimentally. Measurements were performed on silver nanospheres as subresolution test samples, and the captured data were analyzed to determine the modulation transfer function and ultimately the spatial resolution of the system.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, IEEE Trans. Electron Devices, ED-29, 1812 (1982).
    [CrossRef]
  2. K. Kamon, T. Miyamoto, Y. Myoi, H. Nagata, M. Tanaka, and K. Horie, Jpn. J. Appl. Phys. 30, 3021 (1991).
    [CrossRef]
  3. A. K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE, 2001).
  4. M. Erdélyi, Zs. Bor, W. L. Wilson, M. C. Smayling, and F. K. Tittel, Appl. Opt. 39, 1121 (2000).
    [CrossRef]
  5. S. W. Hell and J. Wichmann, Opt. Lett. 19, 780 (1994).
    [CrossRef]
  6. B. R. Boruah, Appl. Opt. 49, 701 (2010).
    [CrossRef]
  7. M. Martinez-Corral, Proc. SPIE 5182, 112 (2003).
    [CrossRef]
  8. M. G. Gustafsson, J. Microsc. 198, 82 (2000).
    [CrossRef]
  9. J. E. Wilkins, J. Opt. Soc. Am. 40, 222 (1950).
    [CrossRef]
  10. H. Osterberg and J. E. Wilkins, J. Opt. Soc. Am. 39, 553 (1949).
    [CrossRef]
  11. B. J. Thompson, J. Opt. Soc. Am. 55, 145 (1965).
    [CrossRef]
  12. J. W. Y. Lit, J. Opt. Soc. Am. 61, 297 (1971).
    [CrossRef]
  13. R. Fiolka, A Stemmer, and Y. Belyaev, Histochem. Cell Biol. 128, 499 (2007).
    [CrossRef]
  14. P. J. Dwyer, C. A. DiMarzio, and M. Rajadhyaksha, Appl. Opt. 46, 1843 (2007).
    [CrossRef]
  15. R. T. Corle and G. S. Kino, Confocal Scanning Optical Microscopy and Related Imaging System (Academic, 1996).
  16. G. Gajdátsy, L. Dudás, M. Erdélyi, and G. Szabó, J. Opt. 12, 115505 (2010).
    [CrossRef]
  17. J. Sinkó, L. Dudás, G. Gajdátsy, M. Erdélyi, and G. Szabó, Opt. Lett. 36, 4011 (2011).
    [CrossRef]
  18. K. Im, S. Han, H. Park, D. Kim, and B. Kim, Opt. Express 13, 5151 (2005).
    [CrossRef]
  19. J. Pawley, Handbook of Biological Confocal Microscopy3rd ed. (Springer, 2006).
  20. E. Dusch, T. Dorval, N. Vincent, M. Wachsmuth, and A. Genovesio, J. Microsc. 228, 132 (2007).
    [CrossRef]

2011 (1)

2010 (2)

G. Gajdátsy, L. Dudás, M. Erdélyi, and G. Szabó, J. Opt. 12, 115505 (2010).
[CrossRef]

B. R. Boruah, Appl. Opt. 49, 701 (2010).
[CrossRef]

2007 (3)

P. J. Dwyer, C. A. DiMarzio, and M. Rajadhyaksha, Appl. Opt. 46, 1843 (2007).
[CrossRef]

R. Fiolka, A Stemmer, and Y. Belyaev, Histochem. Cell Biol. 128, 499 (2007).
[CrossRef]

E. Dusch, T. Dorval, N. Vincent, M. Wachsmuth, and A. Genovesio, J. Microsc. 228, 132 (2007).
[CrossRef]

2005 (1)

2003 (1)

M. Martinez-Corral, Proc. SPIE 5182, 112 (2003).
[CrossRef]

2000 (2)

1994 (1)

1991 (1)

K. Kamon, T. Miyamoto, Y. Myoi, H. Nagata, M. Tanaka, and K. Horie, Jpn. J. Appl. Phys. 30, 3021 (1991).
[CrossRef]

1982 (1)

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, IEEE Trans. Electron Devices, ED-29, 1812 (1982).
[CrossRef]

1971 (1)

1965 (1)

1950 (1)

1949 (1)

Belyaev, Y.

R. Fiolka, A Stemmer, and Y. Belyaev, Histochem. Cell Biol. 128, 499 (2007).
[CrossRef]

Bor, Zs.

Boruah, B. R.

Corle, R. T.

R. T. Corle and G. S. Kino, Confocal Scanning Optical Microscopy and Related Imaging System (Academic, 1996).

DiMarzio, C. A.

Dorval, T.

E. Dusch, T. Dorval, N. Vincent, M. Wachsmuth, and A. Genovesio, J. Microsc. 228, 132 (2007).
[CrossRef]

Dudás, L.

J. Sinkó, L. Dudás, G. Gajdátsy, M. Erdélyi, and G. Szabó, Opt. Lett. 36, 4011 (2011).
[CrossRef]

G. Gajdátsy, L. Dudás, M. Erdélyi, and G. Szabó, J. Opt. 12, 115505 (2010).
[CrossRef]

Dusch, E.

E. Dusch, T. Dorval, N. Vincent, M. Wachsmuth, and A. Genovesio, J. Microsc. 228, 132 (2007).
[CrossRef]

Dwyer, P. J.

Erdélyi, M.

Fiolka, R.

R. Fiolka, A Stemmer, and Y. Belyaev, Histochem. Cell Biol. 128, 499 (2007).
[CrossRef]

Gajdátsy, G.

J. Sinkó, L. Dudás, G. Gajdátsy, M. Erdélyi, and G. Szabó, Opt. Lett. 36, 4011 (2011).
[CrossRef]

G. Gajdátsy, L. Dudás, M. Erdélyi, and G. Szabó, J. Opt. 12, 115505 (2010).
[CrossRef]

Genovesio, A.

E. Dusch, T. Dorval, N. Vincent, M. Wachsmuth, and A. Genovesio, J. Microsc. 228, 132 (2007).
[CrossRef]

Gustafsson, M. G.

M. G. Gustafsson, J. Microsc. 198, 82 (2000).
[CrossRef]

Han, S.

Hell, S. W.

Horie, K.

K. Kamon, T. Miyamoto, Y. Myoi, H. Nagata, M. Tanaka, and K. Horie, Jpn. J. Appl. Phys. 30, 3021 (1991).
[CrossRef]

Im, K.

Kamon, K.

K. Kamon, T. Miyamoto, Y. Myoi, H. Nagata, M. Tanaka, and K. Horie, Jpn. J. Appl. Phys. 30, 3021 (1991).
[CrossRef]

Kim, B.

Kim, D.

Kino, G. S.

R. T. Corle and G. S. Kino, Confocal Scanning Optical Microscopy and Related Imaging System (Academic, 1996).

Levenson, M. D.

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, IEEE Trans. Electron Devices, ED-29, 1812 (1982).
[CrossRef]

Lit, J. W. Y.

Martinez-Corral, M.

M. Martinez-Corral, Proc. SPIE 5182, 112 (2003).
[CrossRef]

Miyamoto, T.

K. Kamon, T. Miyamoto, Y. Myoi, H. Nagata, M. Tanaka, and K. Horie, Jpn. J. Appl. Phys. 30, 3021 (1991).
[CrossRef]

Myoi, Y.

K. Kamon, T. Miyamoto, Y. Myoi, H. Nagata, M. Tanaka, and K. Horie, Jpn. J. Appl. Phys. 30, 3021 (1991).
[CrossRef]

Nagata, H.

K. Kamon, T. Miyamoto, Y. Myoi, H. Nagata, M. Tanaka, and K. Horie, Jpn. J. Appl. Phys. 30, 3021 (1991).
[CrossRef]

Osterberg, H.

Park, H.

Pawley, J.

J. Pawley, Handbook of Biological Confocal Microscopy3rd ed. (Springer, 2006).

Rajadhyaksha, M.

Simpson, R. A.

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, IEEE Trans. Electron Devices, ED-29, 1812 (1982).
[CrossRef]

Sinkó, J.

Smayling, M. C.

Stemmer, A

R. Fiolka, A Stemmer, and Y. Belyaev, Histochem. Cell Biol. 128, 499 (2007).
[CrossRef]

Szabó, G.

J. Sinkó, L. Dudás, G. Gajdátsy, M. Erdélyi, and G. Szabó, Opt. Lett. 36, 4011 (2011).
[CrossRef]

G. Gajdátsy, L. Dudás, M. Erdélyi, and G. Szabó, J. Opt. 12, 115505 (2010).
[CrossRef]

Tanaka, M.

K. Kamon, T. Miyamoto, Y. Myoi, H. Nagata, M. Tanaka, and K. Horie, Jpn. J. Appl. Phys. 30, 3021 (1991).
[CrossRef]

Thompson, B. J.

Tittel, F. K.

Vincent, N.

E. Dusch, T. Dorval, N. Vincent, M. Wachsmuth, and A. Genovesio, J. Microsc. 228, 132 (2007).
[CrossRef]

Viswanathan, N. S.

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, IEEE Trans. Electron Devices, ED-29, 1812 (1982).
[CrossRef]

Wachsmuth, M.

E. Dusch, T. Dorval, N. Vincent, M. Wachsmuth, and A. Genovesio, J. Microsc. 228, 132 (2007).
[CrossRef]

Wichmann, J.

Wilkins, J. E.

Wilson, W. L.

Wong, A. K.

A. K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE, 2001).

Appl. Opt. (3)

Histochem. Cell Biol. (1)

R. Fiolka, A Stemmer, and Y. Belyaev, Histochem. Cell Biol. 128, 499 (2007).
[CrossRef]

IEEE Trans. Electron Devices (1)

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, IEEE Trans. Electron Devices, ED-29, 1812 (1982).
[CrossRef]

J. Microsc. (2)

M. G. Gustafsson, J. Microsc. 198, 82 (2000).
[CrossRef]

E. Dusch, T. Dorval, N. Vincent, M. Wachsmuth, and A. Genovesio, J. Microsc. 228, 132 (2007).
[CrossRef]

J. Opt. (1)

G. Gajdátsy, L. Dudás, M. Erdélyi, and G. Szabó, J. Opt. 12, 115505 (2010).
[CrossRef]

J. Opt. Soc. Am. (4)

Jpn. J. Appl. Phys. (1)

K. Kamon, T. Miyamoto, Y. Myoi, H. Nagata, M. Tanaka, and K. Horie, Jpn. J. Appl. Phys. 30, 3021 (1991).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Proc. SPIE (1)

M. Martinez-Corral, Proc. SPIE 5182, 112 (2003).
[CrossRef]

Other (3)

A. K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE, 2001).

J. Pawley, Handbook of Biological Confocal Microscopy3rd ed. (Springer, 2006).

R. T. Corle and G. S. Kino, Confocal Scanning Optical Microscopy and Related Imaging System (Academic, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Modified illumination of the focusing lens.

Fig. 2.
Fig. 2.

(a) Cross sections of illumination LSF as a function of the obstruction ratio ε, (b) cross sections of the resulting LSF by increasing slit width (0–1 AU) in contour plot, and (c) cross sections of illumination, detection, and resulting LSF at ε=0.15 and a slit width of 0.1 AU.

Fig. 3.
Fig. 3.

Schematic view of the imaging system.

Fig. 4.
Fig. 4.

Measured LSFs by means of a single silver nanoparticle, compared to the calculated LSFs.

Fig. 5.
Fig. 5.

(a) Unresolved and resolved nanosphere pair in cases of normal and modified illuminations, respectively, and (b) optical transfer functions of the system in cases of normal and modified illumination.

Tables (1)

Tables Icon

Table 1. Resolution Improvements Normalized to the Normal Case

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

LSFres(x,y,z)=|hill(x,y,z)|2(|hdet(x,y,z)|2D(x,y)),
LSFres(y,z)=|ααPill(θ)·exp(ikysinθ)×exp(ikzcosθ)kcosθdθ|2ss|ααPdet(θ)·exp(ik(yys)sinθ)×exp(ikzcosθ)kcosθdθ|2dys,
Pill(θ)={exp(iπ)(n1/n2)cosθ,if|sinθsinα|ε(n1/n2)cosθ,ifε<|sinθsinα|10,otherwise,

Metrics