Abstract

We demonstrate passive generation of optical pulse trains with each pulse having distinct center carrier and spectra using tunable group delay (GD) staircase transfer functions. The GD steps result from opposite and equal magnitude GD slopes from narrowband and wideband tunable optical dispersion compensators. We use this technique to split the spectrum of a femtosecond pulse to a pulse burst with precise control of pulse time separation.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Han and B. Jalali, J. Lightwave Technol. 21, 3085(2003).
    [CrossRef]
  2. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, Opt. Express 15, 12949 (2007).
    [CrossRef]
  3. H. C. H. Mulvad, E. Palushani, H. Hu, H. Ji, M. Lillieholm, M. Galili, A. T. Clausen, M. Pu, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, Opt. Express 19, B825 (2011).
    [CrossRef]
  4. A. Yariv and R. G. M. P. Koumans, Electron. Lett. 34, 2012 (1998).
    [CrossRef]
  5. J. Kim, M. J. Park, M. H. Perrott, and F. X. Kärtner, Opt. Express 16, 16509 (2008).
    [CrossRef]
  6. D. Sinefeld, C. R. Doerr, and D. M. Marom, Opt. Express 19, 14532 (2011).
    [CrossRef]
  7. X. Yi, L. Li, T. X. H. Huang, and R. A. Minasian, Opt. Lett. 37, 608 (2012).
    [CrossRef]
  8. D. Sinefeld, Y. Fattal, and D. Marom, in National Fiber Optic Engineers Conference, OSA Technical Digest(Optical Society of America, 2012), paper JTh2A.3.
  9. D. Sinefeld, S. Ben-Ezra, C. R. Doerr, and D. M. Marom, Opt. Lett. 36, 1410 (2011).
    [CrossRef]
  10. K. Seno, N. Ooba, K. Suzuki, T. Watanabe, K. Watanabe, and S. Mino, IEEE Photon. Technol. Lett. 21, 1701 (2009).
    [CrossRef]
  11. X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, IEEE Photon. Technol. Lett. 15, 1111 (2003).
    [CrossRef]
  12. K.-M. Feng, J.-X. Chai, V. Grubsky, D. S. Starodubov, M. I. Hayee, S. Lee, X. Jiang, A. E. Willner, and J. Feinberg, IEEE Photon. Technol. Lett. 11, 373 (1999).
    [CrossRef]
  13. J. M. Dudley, G. Gentry, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
    [CrossRef]
  14. D. E. Leaird, S. Shen, A. M. Weiner, A. Sugita, S. Kamei, M. Ishii, and K. Okamoto, IEEE Photon. Technol. Lett. 13, 221 (2001).
    [CrossRef]

2012

2011

2009

K. Seno, N. Ooba, K. Suzuki, T. Watanabe, K. Watanabe, and S. Mino, IEEE Photon. Technol. Lett. 21, 1701 (2009).
[CrossRef]

2008

2007

2006

J. M. Dudley, G. Gentry, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

2003

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, IEEE Photon. Technol. Lett. 15, 1111 (2003).
[CrossRef]

Y. Han and B. Jalali, J. Lightwave Technol. 21, 3085(2003).
[CrossRef]

2001

D. E. Leaird, S. Shen, A. M. Weiner, A. Sugita, S. Kamei, M. Ishii, and K. Okamoto, IEEE Photon. Technol. Lett. 13, 221 (2001).
[CrossRef]

1999

K.-M. Feng, J.-X. Chai, V. Grubsky, D. S. Starodubov, M. I. Hayee, S. Lee, X. Jiang, A. E. Willner, and J. Feinberg, IEEE Photon. Technol. Lett. 11, 373 (1999).
[CrossRef]

1998

A. Yariv and R. G. M. P. Koumans, Electron. Lett. 34, 2012 (1998).
[CrossRef]

Ben-Ezra, S.

Bennion, I.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, IEEE Photon. Technol. Lett. 15, 1111 (2003).
[CrossRef]

Byron, K.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, IEEE Photon. Technol. Lett. 15, 1111 (2003).
[CrossRef]

Chai, J.-X.

K.-M. Feng, J.-X. Chai, V. Grubsky, D. S. Starodubov, M. I. Hayee, S. Lee, X. Jiang, A. E. Willner, and J. Feinberg, IEEE Photon. Technol. Lett. 11, 373 (1999).
[CrossRef]

Clausen, A. T.

Coen, S.

J. M. Dudley, G. Gentry, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Doerr, C. R.

Dudley, J. M.

J. M. Dudley, G. Gentry, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Fattal, Y.

D. Sinefeld, Y. Fattal, and D. Marom, in National Fiber Optic Engineers Conference, OSA Technical Digest(Optical Society of America, 2012), paper JTh2A.3.

Feinberg, J.

K.-M. Feng, J.-X. Chai, V. Grubsky, D. S. Starodubov, M. I. Hayee, S. Lee, X. Jiang, A. E. Willner, and J. Feinberg, IEEE Photon. Technol. Lett. 11, 373 (1999).
[CrossRef]

Felmeri, I.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, IEEE Photon. Technol. Lett. 15, 1111 (2003).
[CrossRef]

Feng, K.-M.

K.-M. Feng, J.-X. Chai, V. Grubsky, D. S. Starodubov, M. I. Hayee, S. Lee, X. Jiang, A. E. Willner, and J. Feinberg, IEEE Photon. Technol. Lett. 11, 373 (1999).
[CrossRef]

Foster, M. A.

Gaeta, A. L.

Galili, M.

Gentry, G.

J. M. Dudley, G. Gentry, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Grubsky, V.

K.-M. Feng, J.-X. Chai, V. Grubsky, D. S. Starodubov, M. I. Hayee, S. Lee, X. Jiang, A. E. Willner, and J. Feinberg, IEEE Photon. Technol. Lett. 11, 373 (1999).
[CrossRef]

Han, Y.

Hayee, M. I.

K.-M. Feng, J.-X. Chai, V. Grubsky, D. S. Starodubov, M. I. Hayee, S. Lee, X. Jiang, A. E. Willner, and J. Feinberg, IEEE Photon. Technol. Lett. 11, 373 (1999).
[CrossRef]

Hu, H.

Huang, T. X. H.

Huang, Z.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, IEEE Photon. Technol. Lett. 15, 1111 (2003).
[CrossRef]

Hvam, J. M.

Ishii, M.

D. E. Leaird, S. Shen, A. M. Weiner, A. Sugita, S. Kamei, M. Ishii, and K. Okamoto, IEEE Photon. Technol. Lett. 13, 221 (2001).
[CrossRef]

Jalali, B.

Jeppesen, P.

Ji, H.

Jiang, X.

K.-M. Feng, J.-X. Chai, V. Grubsky, D. S. Starodubov, M. I. Hayee, S. Lee, X. Jiang, A. E. Willner, and J. Feinberg, IEEE Photon. Technol. Lett. 11, 373 (1999).
[CrossRef]

Kamei, S.

D. E. Leaird, S. Shen, A. M. Weiner, A. Sugita, S. Kamei, M. Ishii, and K. Okamoto, IEEE Photon. Technol. Lett. 13, 221 (2001).
[CrossRef]

Kärtner, F. X.

Khrushchev, I.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, IEEE Photon. Technol. Lett. 15, 1111 (2003).
[CrossRef]

Kim, J.

Koumans, R. G. M. P.

A. Yariv and R. G. M. P. Koumans, Electron. Lett. 34, 2012 (1998).
[CrossRef]

Leaird, D. E.

D. E. Leaird, S. Shen, A. M. Weiner, A. Sugita, S. Kamei, M. Ishii, and K. Okamoto, IEEE Photon. Technol. Lett. 13, 221 (2001).
[CrossRef]

Lee, S.

K.-M. Feng, J.-X. Chai, V. Grubsky, D. S. Starodubov, M. I. Hayee, S. Lee, X. Jiang, A. E. Willner, and J. Feinberg, IEEE Photon. Technol. Lett. 11, 373 (1999).
[CrossRef]

Li, L.

Lillieholm, M.

Lipson, M.

Lloyd, G.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, IEEE Photon. Technol. Lett. 15, 1111 (2003).
[CrossRef]

Marom, D.

D. Sinefeld, Y. Fattal, and D. Marom, in National Fiber Optic Engineers Conference, OSA Technical Digest(Optical Society of America, 2012), paper JTh2A.3.

Marom, D. M.

Minasian, R. A.

Mino, S.

K. Seno, N. Ooba, K. Suzuki, T. Watanabe, K. Watanabe, and S. Mino, IEEE Photon. Technol. Lett. 21, 1701 (2009).
[CrossRef]

Mitchell, J.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, IEEE Photon. Technol. Lett. 15, 1111 (2003).
[CrossRef]

Mulvad, H. C. H.

Okamoto, K.

D. E. Leaird, S. Shen, A. M. Weiner, A. Sugita, S. Kamei, M. Ishii, and K. Okamoto, IEEE Photon. Technol. Lett. 13, 221 (2001).
[CrossRef]

Ooba, N.

K. Seno, N. Ooba, K. Suzuki, T. Watanabe, K. Watanabe, and S. Mino, IEEE Photon. Technol. Lett. 21, 1701 (2009).
[CrossRef]

Oxenløwe, L. K.

Palushani, E.

Park, M. J.

Perrott, M. H.

Pu, M.

Rhead, P.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, IEEE Photon. Technol. Lett. 15, 1111 (2003).
[CrossRef]

Salem, R.

Seno, K.

K. Seno, N. Ooba, K. Suzuki, T. Watanabe, K. Watanabe, and S. Mino, IEEE Photon. Technol. Lett. 21, 1701 (2009).
[CrossRef]

Shen, S.

D. E. Leaird, S. Shen, A. M. Weiner, A. Sugita, S. Kamei, M. Ishii, and K. Okamoto, IEEE Photon. Technol. Lett. 13, 221 (2001).
[CrossRef]

Shu, X.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, IEEE Photon. Technol. Lett. 15, 1111 (2003).
[CrossRef]

Sinefeld, D.

D. Sinefeld, C. R. Doerr, and D. M. Marom, Opt. Express 19, 14532 (2011).
[CrossRef]

D. Sinefeld, S. Ben-Ezra, C. R. Doerr, and D. M. Marom, Opt. Lett. 36, 1410 (2011).
[CrossRef]

D. Sinefeld, Y. Fattal, and D. Marom, in National Fiber Optic Engineers Conference, OSA Technical Digest(Optical Society of America, 2012), paper JTh2A.3.

Starodubov, D. S.

K.-M. Feng, J.-X. Chai, V. Grubsky, D. S. Starodubov, M. I. Hayee, S. Lee, X. Jiang, A. E. Willner, and J. Feinberg, IEEE Photon. Technol. Lett. 11, 373 (1999).
[CrossRef]

Sugden, K.

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, IEEE Photon. Technol. Lett. 15, 1111 (2003).
[CrossRef]

Sugita, A.

D. E. Leaird, S. Shen, A. M. Weiner, A. Sugita, S. Kamei, M. Ishii, and K. Okamoto, IEEE Photon. Technol. Lett. 13, 221 (2001).
[CrossRef]

Suzuki, K.

K. Seno, N. Ooba, K. Suzuki, T. Watanabe, K. Watanabe, and S. Mino, IEEE Photon. Technol. Lett. 21, 1701 (2009).
[CrossRef]

Turner, A. C.

Watanabe, K.

K. Seno, N. Ooba, K. Suzuki, T. Watanabe, K. Watanabe, and S. Mino, IEEE Photon. Technol. Lett. 21, 1701 (2009).
[CrossRef]

Watanabe, T.

K. Seno, N. Ooba, K. Suzuki, T. Watanabe, K. Watanabe, and S. Mino, IEEE Photon. Technol. Lett. 21, 1701 (2009).
[CrossRef]

Weiner, A. M.

D. E. Leaird, S. Shen, A. M. Weiner, A. Sugita, S. Kamei, M. Ishii, and K. Okamoto, IEEE Photon. Technol. Lett. 13, 221 (2001).
[CrossRef]

Willner, A. E.

K.-M. Feng, J.-X. Chai, V. Grubsky, D. S. Starodubov, M. I. Hayee, S. Lee, X. Jiang, A. E. Willner, and J. Feinberg, IEEE Photon. Technol. Lett. 11, 373 (1999).
[CrossRef]

Yariv, A.

A. Yariv and R. G. M. P. Koumans, Electron. Lett. 34, 2012 (1998).
[CrossRef]

Yi, X.

Yvind, K.

Electron. Lett.

A. Yariv and R. G. M. P. Koumans, Electron. Lett. 34, 2012 (1998).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Seno, N. Ooba, K. Suzuki, T. Watanabe, K. Watanabe, and S. Mino, IEEE Photon. Technol. Lett. 21, 1701 (2009).
[CrossRef]

X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, IEEE Photon. Technol. Lett. 15, 1111 (2003).
[CrossRef]

K.-M. Feng, J.-X. Chai, V. Grubsky, D. S. Starodubov, M. I. Hayee, S. Lee, X. Jiang, A. E. Willner, and J. Feinberg, IEEE Photon. Technol. Lett. 11, 373 (1999).
[CrossRef]

D. E. Leaird, S. Shen, A. M. Weiner, A. Sugita, S. Kamei, M. Ishii, and K. Okamoto, IEEE Photon. Technol. Lett. 13, 221 (2001).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Rev. Mod. Phys.

J. M. Dudley, G. Gentry, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Other

D. Sinefeld, Y. Fattal, and D. Marom, in National Fiber Optic Engineers Conference, OSA Technical Digest(Optical Society of America, 2012), paper JTh2A.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Layout of the tunable GD system: (a) System arrangement. (b) NB TODC and WB TODC GD slopes and the resultant GD staircase.

Fig. 2.
Fig. 2.

(a) NB TODC based on high resolution dispersion from an AWG. Changing the grating-lens distance, dN·B, results in quadratic spectral phase or GD slope. (b) WB TODC of similar nature with a bulk diffraction grating. The system is double-passed to maximize the CD capacity and avoid spectral narrowing.

Fig. 3.
Fig. 3.

Plots of measured GD with slopes of ±18.75ps/nm (blue) and ±50ps/nm (green). (a) NB TODC. (b) WB TODC. (c) The combined TODC with the GD staircase pattern, with step heights of 15 ps (blue) and 40 ps (green). (d) IL of the combined TODC in both cases.

Fig. 4.
Fig. 4.

High-speed oscilloscope (HS-OSS) measurements of the WDM pulse bursts that were generated with GD system: (a) 15 ps spaced pulses. (b) 40 ps spaced pulses. (c) OSA measurement of the relative power of the filtered MLL spectrum for both 15 ps (blue) and 40 ps (green) spaced pulses.

Fig. 5.
Fig. 5.

Validation experiment of unique pulse center carrier and spectrum by WDM channel filtering, and subsequent HS-OSS measurements and corresponding OSA measurements, collected and normalized for each filtered pulse separately. (a) Temporal measurements and (b) spectral measurements. The colors in (a) and (b) are matched, showing that each pulse has distinguished spectral content.

Fig. 6.
Fig. 6.

Staircase GD produced by a combination of CD from 10 km SMF and a NB TODC. (a) NB TODC with GD slope of 170ps/nm. (b) WB TODC with GD slope of 170ps/nm. (c) The combined setup with the resultant GD staircase pattern, with step height of 136 ps. (d) HS-OSS measurements of the WDM pulse burst.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ΔGD[ps]=CD[ps/nm]·Δλ[nm],
CD=2λ0c0(dθdλ)2Δz.

Metrics