Abstract

This Letter presents a crystalline silicon thin film solar cell model with Si nanowire arrays surface decoration and metallic nanostructure patterns on the back reflector. The nanostructured Ag back reflector can significantly enhance the absorption in the near-infrared spectrum. Furthermore, by inserting a ZnO:Al layer between the silicon substrate and nanostructured Ag back reflector, the absorption loss in the Ag back reflector can be clearly depressed, contributing to a maximum Jsc of 28.4mA/cm2. A photocurrent enhancement of 22% is achieved compared with a SiNW solar cell with a planar Ag back reflector.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Garnett and P. Yang, Nano Lett. 10, 1082 (2010).
    [CrossRef]
  2. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, Nat. Mater. 9, 368 (2010).
    [CrossRef]
  3. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nat. Mater. 4, 455 (2005).
    [CrossRef]
  4. D. M. Schaadt, B. Feng, and E. T. Yu, Appl. Phys. Lett. 86, 063106 (2005).
    [CrossRef]
  5. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yuerkacs, Appl. Phys. Lett. 89, 093103 (2006).
    [CrossRef]
  6. P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, Appl. Phys. Lett. 93, 113108 (2008).
    [CrossRef]
  7. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. 101, 093105 (2007).
    [CrossRef]
  8. D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, Appl. Phys. Lett. 93, 091107 (2008).
    [CrossRef]
  9. H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).
    [CrossRef]
  10. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method(Artech House, 2005).
  11. Lumerical Solutions, Inc. http://www.lumerical.com .
  12. A. Deinega and S. John, Opt. Lett. 37, 112 (2012).
    [CrossRef]
  13. J. Lu and Y. Chang, Superlattices Microstruct. 47, 60 (2099).
    [CrossRef]
  14. Lumerical Solutions, Inc. http://www.lumerical.com/solutions/innovation/fdtd_multicoefficient_material_modeling.html .
  15. M. Caglar, S. Ilican, Y. Caglar, and F. Yakuphanoglou, J. Mater. Sci.: Mater. Electron. 19, 704 (2008).
    [CrossRef]
  16. L. Hu and G. Chen, Nano Lett. 7, 3249 (2007).
    [CrossRef]
  17. W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).
    [CrossRef]
  18. U. W. Paetzold, E. Moulin, B. E. Pieters, R. Carius, and U. Rau, Opt. Express 19, A1219 (2011).
    [CrossRef]
  19. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, Phys. Rev. B 72, 075405 (2005).
    [CrossRef]

2099 (1)

J. Lu and Y. Chang, Superlattices Microstruct. 47, 60 (2099).
[CrossRef]

2012 (1)

2011 (1)

2010 (3)

H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).
[CrossRef]

E. Garnett and P. Yang, Nano Lett. 10, 1082 (2010).
[CrossRef]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, Nat. Mater. 9, 368 (2010).
[CrossRef]

2008 (3)

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, Appl. Phys. Lett. 93, 113108 (2008).
[CrossRef]

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, Appl. Phys. Lett. 93, 091107 (2008).
[CrossRef]

M. Caglar, S. Ilican, Y. Caglar, and F. Yakuphanoglou, J. Mater. Sci.: Mater. Electron. 19, 704 (2008).
[CrossRef]

2007 (2)

L. Hu and G. Chen, Nano Lett. 7, 3249 (2007).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

2006 (1)

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yuerkacs, Appl. Phys. Lett. 89, 093103 (2006).
[CrossRef]

2005 (3)

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nat. Mater. 4, 455 (2005).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, Phys. Rev. B 72, 075405 (2005).
[CrossRef]

1961 (1)

W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).
[CrossRef]

Atwater, H. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, Nat. Mater. 9, 368 (2010).
[CrossRef]

H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, Phys. Rev. B 72, 075405 (2005).
[CrossRef]

Boettcher, S. W.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, Nat. Mater. 9, 368 (2010).
[CrossRef]

Briggs, R. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, Nat. Mater. 9, 368 (2010).
[CrossRef]

Caglar, M.

M. Caglar, S. Ilican, Y. Caglar, and F. Yakuphanoglou, J. Mater. Sci.: Mater. Electron. 19, 704 (2008).
[CrossRef]

Caglar, Y.

M. Caglar, S. Ilican, Y. Caglar, and F. Yakuphanoglou, J. Mater. Sci.: Mater. Electron. 19, 704 (2008).
[CrossRef]

Carius, R.

Catchpole, K. R.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

Chang, Y.

J. Lu and Y. Chang, Superlattices Microstruct. 47, 60 (2099).
[CrossRef]

Chen, G.

L. Hu and G. Chen, Nano Lett. 7, 3249 (2007).
[CrossRef]

Chen, W. V.

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, Appl. Phys. Lett. 93, 091107 (2008).
[CrossRef]

Deinega, A.

Derkacs, D.

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, Appl. Phys. Lett. 93, 091107 (2008).
[CrossRef]

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, Appl. Phys. Lett. 93, 113108 (2008).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yuerkacs, Appl. Phys. Lett. 89, 093103 (2006).
[CrossRef]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, Phys. Rev. B 72, 075405 (2005).
[CrossRef]

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Garnett, E.

E. Garnett and P. Yang, Nano Lett. 10, 1082 (2010).
[CrossRef]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

Greene, L. E.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nat. Mater. 4, 455 (2005).
[CrossRef]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method(Artech House, 2005).

Hu, L.

L. Hu and G. Chen, Nano Lett. 7, 3249 (2007).
[CrossRef]

Ilican, S.

M. Caglar, S. Ilican, Y. Caglar, and F. Yakuphanoglou, J. Mater. Sci.: Mater. Electron. 19, 704 (2008).
[CrossRef]

John, S.

Johnson, J. C.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nat. Mater. 4, 455 (2005).
[CrossRef]

Kelzenberg, M. D.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, Nat. Mater. 9, 368 (2010).
[CrossRef]

Law, M.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nat. Mater. 4, 455 (2005).
[CrossRef]

Lewis, N. S.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, Nat. Mater. 9, 368 (2010).
[CrossRef]

Lim, S. H.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, Appl. Phys. Lett. 93, 113108 (2008).
[CrossRef]

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, Appl. Phys. Lett. 93, 091107 (2008).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yuerkacs, Appl. Phys. Lett. 89, 093103 (2006).
[CrossRef]

Lu, J.

J. Lu and Y. Chang, Superlattices Microstruct. 47, 60 (2099).
[CrossRef]

Mar, W.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yuerkacs, Appl. Phys. Lett. 89, 093103 (2006).
[CrossRef]

Matheu, P.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, Appl. Phys. Lett. 93, 113108 (2008).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yuerkacs, Appl. Phys. Lett. 89, 093103 (2006).
[CrossRef]

Matheu, P. M.

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, Appl. Phys. Lett. 93, 091107 (2008).
[CrossRef]

McPheeters, C.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, Appl. Phys. Lett. 93, 113108 (2008).
[CrossRef]

Moulin, E.

Paetzold, U. W.

Petykiewicz, J. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, Nat. Mater. 9, 368 (2010).
[CrossRef]

Pieters, B. E.

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, Phys. Rev. B 72, 075405 (2005).
[CrossRef]

Putnam, M. C.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, Nat. Mater. 9, 368 (2010).
[CrossRef]

Queisser, H. J.

W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).
[CrossRef]

Rau, U.

Saykally, R.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nat. Mater. 4, 455 (2005).
[CrossRef]

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Shockley, W.

W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).
[CrossRef]

Spurgeon, J. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, Nat. Mater. 9, 368 (2010).
[CrossRef]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, Phys. Rev. B 72, 075405 (2005).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method(Artech House, 2005).

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

Turner-Evans, D. B.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, Nat. Mater. 9, 368 (2010).
[CrossRef]

Warren, E. L.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, Nat. Mater. 9, 368 (2010).
[CrossRef]

Yakuphanoglou, F.

M. Caglar, S. Ilican, Y. Caglar, and F. Yakuphanoglou, J. Mater. Sci.: Mater. Electron. 19, 704 (2008).
[CrossRef]

Yang, P.

E. Garnett and P. Yang, Nano Lett. 10, 1082 (2010).
[CrossRef]

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nat. Mater. 4, 455 (2005).
[CrossRef]

Yu, E. T.

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, Appl. Phys. Lett. 93, 113108 (2008).
[CrossRef]

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, Appl. Phys. Lett. 93, 091107 (2008).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Yu, P. K. L.

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, Appl. Phys. Lett. 93, 091107 (2008).
[CrossRef]

Yuerkacs, E. T.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yuerkacs, Appl. Phys. Lett. 89, 093103 (2006).
[CrossRef]

Appl. Phys. Lett. (4)

D. M. Schaadt, B. Feng, and E. T. Yu, Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yuerkacs, Appl. Phys. Lett. 89, 093103 (2006).
[CrossRef]

P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, Appl. Phys. Lett. 93, 113108 (2008).
[CrossRef]

D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, Appl. Phys. Lett. 93, 091107 (2008).
[CrossRef]

J. Appl. Phys. (2)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).
[CrossRef]

J. Mater. Sci.: Mater. Electron. (1)

M. Caglar, S. Ilican, Y. Caglar, and F. Yakuphanoglou, J. Mater. Sci.: Mater. Electron. 19, 704 (2008).
[CrossRef]

Nano Lett. (2)

L. Hu and G. Chen, Nano Lett. 7, 3249 (2007).
[CrossRef]

E. Garnett and P. Yang, Nano Lett. 10, 1082 (2010).
[CrossRef]

Nat. Mater. (3)

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, Nat. Mater. 9, 368 (2010).
[CrossRef]

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nat. Mater. 4, 455 (2005).
[CrossRef]

H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, Phys. Rev. B 72, 075405 (2005).
[CrossRef]

Superlattices Microstruct. (1)

J. Lu and Y. Chang, Superlattices Microstruct. 47, 60 (2099).
[CrossRef]

Other (3)

Lumerical Solutions, Inc. http://www.lumerical.com/solutions/innovation/fdtd_multicoefficient_material_modeling.html .

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method(Artech House, 2005).

Lumerical Solutions, Inc. http://www.lumerical.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Three-dimensional schematic diagram of the proposed SiNW solar cell. Cross sectional view and top view of unit cell consisting of (b) a hemisphere-Ag back reflector or (c) a ZnO:Al/hemisphere-Ag back reflector. Structural parameters of the solar cell are nanowire diameter (D), height (H), periodicity (P), substrate thickness (T), radius of the hemispherical nanostructure (r) and ZnO:Al layer thickness (t).

Fig. 2.
Fig. 2.

(a) Reproduction of Hu and Chen’s work of 2.33 μm Si film and periodical SiNW arrays with a diameter of 50 nm, periodicity of 100 nm, and differing nanowire lengths of 1.16, 2.33, 4.66 μm. (b) Absorptance of nanowires with and without a back reflector is reproduced and plotted. (c) Absorption in Si and (d) reflectance of SiNW solar cell patterned with a periodical hemisphere-Ag back reflector (r=100nm). Inset of (c) depicts the absorption enhancement resulting from the hemisphere-Ag nanostructures.

Fig. 3.
Fig. 3.

(a) Absorptance of the SiNW solar cell patterned with a periodical hemisphere-Ag (solid curve) and a planar (dash curve) back reflector, the radius of hemisphere is varied from 25 to 200 nm. (b) Short circuit current density (Jsc), current density loss by reflection, and Ag absorption as a function of the radius of hemisphere for the periodical hemisphere-Ag.

Fig. 4.
Fig. 4.

(a) Simulated optical absorption profile of the three samples under normal incidence (wavelength=780nm). (b) Absorptance of the SiNW solar cell patterned with a periodical ZnO:Al/hemisphere-Ag back reflector, the radius of hemisphere is varied from 25 to 200 nm. (c) Short circuit current density (Jsc), current density loss by reflection and Ag absorption as a function of the radius of hemisphere for the periodical ZnO:Al/hemisphere-Ag.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Jsc=qhc0λgλ×I(λ)×A(λ)dλ,

Metrics