Abstract

Recently it has been demonstrated that digital holography is a powerful means allowing imaging of both amplitude and phase objects in turbid flowing media. However, in quasi-static turbid microfluidics, multiple scattering contributions through the colloids superimpose coherently to the recording device, resulting in speckle noise and hindering a clear vision of the objects. In this Letter we exploit the Brownian motion of the colloidal particles to get multiple uncorrelated holograms, and we combine them to reduce the speckle contrast. In this way we get a multi-look gain without losing image resolution.

© 2012 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Supplementary Material (4)

» Media 1: AVI (4097 KB)     
» Media 2: AVI (3511 KB)     
» Media 3: AVI (1858 KB)     
» Media 4: AVI (6914 KB)     

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription