Abstract

We show theoretically and with numerical simulations that the direction of the in-plane scattering from a subwavelength optical antenna system can be controlled by the frequency of the incident light. This optical steering effect does not rely on propagation phase shifts or diffraction but arises from phase shifts in the localized surface plasmon modes of the antenna. An analytical model is developed to optimize the parameters for the configuration, showing good agreement with a rigorous numerical simulation. The simulation predicts a 25° angular shift in the direction of the light scattered from two gold nanorods for a wavelength change of 12 nm.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny and N. van Hulst, Nat. Photonics 5, 83 (2011).
    [CrossRef]
  2. Q.-H. Park, Contemp. Phys. 50, 407 (2009).
    [CrossRef]
  3. J. J. Li, A. Salandrino, and N. Engheta, Phys. Rev. B 76, 245403 (2007).
    [CrossRef]
  4. T. Kosako, Y. Kadoya, and H. F. Hofmann, Nat. Photonics 4, 312 (2010).
    [CrossRef]
  5. L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, Nano Lett. 10, 1936 (2011).
    [CrossRef]
  6. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).
    [CrossRef]
  7. A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, and U. Welp, Appl. Phys. Lett. 91, 083115 (2007).
    [CrossRef]
  8. J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. S. Cai, and M. L. Brongersma, Nat. Commun. 2, 525(2011).
    [CrossRef]
  9. T. J. Davis, K. C. Vernon, and D. E. Gómez, Phys. Rev. B 79, 155423 (2009).
    [CrossRef]
  10. T. J. Davis, D. E. Gómez, and K. C. Vernon, Nano Lett. 10, 2618 (2010).
    [CrossRef]
  11. T. J. Davis, D. E. Gómez, and K. C. Vernon, Phys. Rev. B 81, 045432 (2010).
    [CrossRef]
  12. J. D. Jackson, Classical Electrodynamics, 2nd ed. (John Wiley & Sons, 1975).
  13. P. N. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
    [CrossRef]

2011

L. Novotny and N. van Hulst, Nat. Photonics 5, 83 (2011).
[CrossRef]

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, Nano Lett. 10, 1936 (2011).
[CrossRef]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).
[CrossRef]

J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. S. Cai, and M. L. Brongersma, Nat. Commun. 2, 525(2011).
[CrossRef]

2010

T. J. Davis, D. E. Gómez, and K. C. Vernon, Nano Lett. 10, 2618 (2010).
[CrossRef]

T. J. Davis, D. E. Gómez, and K. C. Vernon, Phys. Rev. B 81, 045432 (2010).
[CrossRef]

T. Kosako, Y. Kadoya, and H. F. Hofmann, Nat. Photonics 4, 312 (2010).
[CrossRef]

2009

T. J. Davis, K. C. Vernon, and D. E. Gómez, Phys. Rev. B 79, 155423 (2009).
[CrossRef]

Q.-H. Park, Contemp. Phys. 50, 407 (2009).
[CrossRef]

2007

J. J. Li, A. Salandrino, and N. Engheta, Phys. Rev. B 76, 245403 (2007).
[CrossRef]

A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, and U. Welp, Appl. Phys. Lett. 91, 083115 (2007).
[CrossRef]

1972

P. N. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Afshinmanesh, F.

J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. S. Cai, and M. L. Brongersma, Nat. Commun. 2, 525(2011).
[CrossRef]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).
[CrossRef]

Brongersma, M. L.

J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. S. Cai, and M. L. Brongersma, Nat. Commun. 2, 525(2011).
[CrossRef]

Cai, W. S.

J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. S. Cai, and M. L. Brongersma, Nat. Commun. 2, 525(2011).
[CrossRef]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).
[CrossRef]

Christy, R. W.

P. N. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Davis, T. J.

T. J. Davis, D. E. Gómez, and K. C. Vernon, Nano Lett. 10, 2618 (2010).
[CrossRef]

T. J. Davis, D. E. Gómez, and K. C. Vernon, Phys. Rev. B 81, 045432 (2010).
[CrossRef]

T. J. Davis, K. C. Vernon, and D. E. Gómez, Phys. Rev. B 79, 155423 (2009).
[CrossRef]

Engheta, N.

J. J. Li, A. Salandrino, and N. Engheta, Phys. Rev. B 76, 245403 (2007).
[CrossRef]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).
[CrossRef]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).
[CrossRef]

Goh, X. M.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, Nano Lett. 10, 1936 (2011).
[CrossRef]

Gómez, D. E.

T. J. Davis, D. E. Gómez, and K. C. Vernon, Phys. Rev. B 81, 045432 (2010).
[CrossRef]

T. J. Davis, D. E. Gómez, and K. C. Vernon, Nano Lett. 10, 2618 (2010).
[CrossRef]

T. J. Davis, K. C. Vernon, and D. E. Gómez, Phys. Rev. B 79, 155423 (2009).
[CrossRef]

Hiller, J. M.

A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, and U. Welp, Appl. Phys. Lett. 91, 083115 (2007).
[CrossRef]

Hofmann, H. F.

T. Kosako, Y. Kadoya, and H. F. Hofmann, Nat. Photonics 4, 312 (2010).
[CrossRef]

Imre, A.

A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, and U. Welp, Appl. Phys. Lett. 91, 083115 (2007).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 2nd ed. (John Wiley & Sons, 1975).

Johnson, P. N.

P. N. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Kadoya, Y.

T. Kosako, Y. Kadoya, and H. F. Hofmann, Nat. Photonics 4, 312 (2010).
[CrossRef]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).
[CrossRef]

Kosako, T.

T. Kosako, Y. Kadoya, and H. F. Hofmann, Nat. Photonics 4, 312 (2010).
[CrossRef]

Li, J. J.

J. J. Li, A. Salandrino, and N. Engheta, Phys. Rev. B 76, 245403 (2007).
[CrossRef]

Lin, L.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, Nano Lett. 10, 1936 (2011).
[CrossRef]

Liu, J. S. Q.

J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. S. Cai, and M. L. Brongersma, Nat. Commun. 2, 525(2011).
[CrossRef]

McGuinness, L. P.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, Nano Lett. 10, 1936 (2011).
[CrossRef]

Novotny, L.

L. Novotny and N. van Hulst, Nat. Photonics 5, 83 (2011).
[CrossRef]

Pala, R. A.

J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. S. Cai, and M. L. Brongersma, Nat. Commun. 2, 525(2011).
[CrossRef]

Park, Q.-H.

Q.-H. Park, Contemp. Phys. 50, 407 (2009).
[CrossRef]

Pearson, J.

A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, and U. Welp, Appl. Phys. Lett. 91, 083115 (2007).
[CrossRef]

Roberts, A.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, Nano Lett. 10, 1936 (2011).
[CrossRef]

Salandrino, A.

J. J. Li, A. Salandrino, and N. Engheta, Phys. Rev. B 76, 245403 (2007).
[CrossRef]

Tetienne, J.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).
[CrossRef]

van Hulst, N.

L. Novotny and N. van Hulst, Nat. Photonics 5, 83 (2011).
[CrossRef]

Vernon, K. C.

T. J. Davis, D. E. Gómez, and K. C. Vernon, Nano Lett. 10, 2618 (2010).
[CrossRef]

T. J. Davis, D. E. Gómez, and K. C. Vernon, Phys. Rev. B 81, 045432 (2010).
[CrossRef]

T. J. Davis, K. C. Vernon, and D. E. Gómez, Phys. Rev. B 79, 155423 (2009).
[CrossRef]

Vlasko-Vlasov, V. K.

A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, and U. Welp, Appl. Phys. Lett. 91, 083115 (2007).
[CrossRef]

Welp, U.

A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, and U. Welp, Appl. Phys. Lett. 91, 083115 (2007).
[CrossRef]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).
[CrossRef]

Appl. Phys. Lett.

A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, and U. Welp, Appl. Phys. Lett. 91, 083115 (2007).
[CrossRef]

Contemp. Phys.

Q.-H. Park, Contemp. Phys. 50, 407 (2009).
[CrossRef]

Nano Lett.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, Nano Lett. 10, 1936 (2011).
[CrossRef]

T. J. Davis, D. E. Gómez, and K. C. Vernon, Nano Lett. 10, 2618 (2010).
[CrossRef]

Nat. Commun.

J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. S. Cai, and M. L. Brongersma, Nat. Commun. 2, 525(2011).
[CrossRef]

Nat. Photonics

L. Novotny and N. van Hulst, Nat. Photonics 5, 83 (2011).
[CrossRef]

T. Kosako, Y. Kadoya, and H. F. Hofmann, Nat. Photonics 4, 312 (2010).
[CrossRef]

Phys. Rev. B

J. J. Li, A. Salandrino, and N. Engheta, Phys. Rev. B 76, 245403 (2007).
[CrossRef]

T. J. Davis, K. C. Vernon, and D. E. Gómez, Phys. Rev. B 79, 155423 (2009).
[CrossRef]

T. J. Davis, D. E. Gómez, and K. C. Vernon, Phys. Rev. B 81, 045432 (2010).
[CrossRef]

P. N. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Science

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).
[CrossRef]

Other

J. D. Jackson, Classical Electrodynamics, 2nd ed. (John Wiley & Sons, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

(a) Two nanorods with distinct orthogonal resonant modes that radiate light perpendicular to their dipole moments (shown by the dashed arrows). The angle ψ defines the direction of polarization of the incident light. (b) Radiated power ratio (solid line) and the range of angles over which radiation is scattered (dashed line) as functions of the normalized frequency difference between resonances (see text for details).

Fig. 2.
Fig. 2.

Results based on a numerical solution of Maxwell’s equations. (a) Scattered power for incident light polarized at ψ=0° and ψ=90° which independently excite nanorod-1 (57 nm long) and nanorod-2 (61 nm long), respectively. These simulated scattering spectra have peaks at λres1=697nm and λres2=712nm and both spectra have FWHM of 25 nm, (b) maxima in the scattered power and the relative angles at which they occur for different excitation wavelengths, and (c) far-field radiation pattern in the x–yplane. The optical steering occurs between 300 and 325 deg.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

apj(ω)Apjp⃗pj·E⃗0ωωpj+iΓpj/2,
dPdΩ=ck4Ap2p4E232π2ϵ0(ABsin2ϕo+Ccos2ϕo2(A+C)(AC)),
ϕmax=12arctan(ω˜2+Γ2/4Δ22ω˜Δ),
dP(ω˜=Δ)/dΩdP(ω˜=0)/dΩ=(ρ2+1)2(4ρ4+1+2ρ2+1)2(4ρ2+1),

Metrics