Abstract

We report the observation of non-Gaussian reflected and transmitted laser spatial profiles resulting from the excitation of resonant modes below the critical angle for total reflection in a Fabry–Perot cavity formed by a thin 7um air film between two glass prisms. The observations of an interference minimum in the reflected profile and exponential decay in the transmitted profile are new and in excellent agreement with a complex pole theory. Extension of the theory to a larger 0.7m cavity at normal incidence predicts similar reshaped profiles.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Hecht, Optics, 4th ed. (Addison-Wesley, 2002).
  2. W. P. Chen, G. Ritchie, and E. Burstein, Phys. Rev. Lett. 37, 993 (1976).
    [CrossRef]
  3. H. J. Simon, R. V. Andaloro, and R. T. Deck, Opt. Lett. 32, 1590 (2007).
    [CrossRef]
  4. Z. Wu, G. Xia, H. Zhou, J. Wu, and M. Liu, Opt. Laser Technol. 35, 1 (2003).
    [CrossRef]
  5. N. Hodgson and H. Weber, Laser Resonators, 2nd ed. (Springer, 2005).

2007 (1)

2003 (1)

Z. Wu, G. Xia, H. Zhou, J. Wu, and M. Liu, Opt. Laser Technol. 35, 1 (2003).
[CrossRef]

1976 (1)

W. P. Chen, G. Ritchie, and E. Burstein, Phys. Rev. Lett. 37, 993 (1976).
[CrossRef]

Andaloro, R. V.

Burstein, E.

W. P. Chen, G. Ritchie, and E. Burstein, Phys. Rev. Lett. 37, 993 (1976).
[CrossRef]

Chen, W. P.

W. P. Chen, G. Ritchie, and E. Burstein, Phys. Rev. Lett. 37, 993 (1976).
[CrossRef]

Deck, R. T.

Hecht, E.

E. Hecht, Optics, 4th ed. (Addison-Wesley, 2002).

Hodgson, N.

N. Hodgson and H. Weber, Laser Resonators, 2nd ed. (Springer, 2005).

Liu, M.

Z. Wu, G. Xia, H. Zhou, J. Wu, and M. Liu, Opt. Laser Technol. 35, 1 (2003).
[CrossRef]

Ritchie, G.

W. P. Chen, G. Ritchie, and E. Burstein, Phys. Rev. Lett. 37, 993 (1976).
[CrossRef]

Simon, H. J.

Weber, H.

N. Hodgson and H. Weber, Laser Resonators, 2nd ed. (Springer, 2005).

Wu, J.

Z. Wu, G. Xia, H. Zhou, J. Wu, and M. Liu, Opt. Laser Technol. 35, 1 (2003).
[CrossRef]

Wu, Z.

Z. Wu, G. Xia, H. Zhou, J. Wu, and M. Liu, Opt. Laser Technol. 35, 1 (2003).
[CrossRef]

Xia, G.

Z. Wu, G. Xia, H. Zhou, J. Wu, and M. Liu, Opt. Laser Technol. 35, 1 (2003).
[CrossRef]

Zhou, H.

Z. Wu, G. Xia, H. Zhou, J. Wu, and M. Liu, Opt. Laser Technol. 35, 1 (2003).
[CrossRef]

Opt. Laser Technol. (1)

Z. Wu, G. Xia, H. Zhou, J. Wu, and M. Liu, Opt. Laser Technol. 35, 1 (2003).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

W. P. Chen, G. Ritchie, and E. Burstein, Phys. Rev. Lett. 37, 993 (1976).
[CrossRef]

Other (2)

E. Hecht, Optics, 4th ed. (Addison-Wesley, 2002).

N. Hodgson and H. Weber, Laser Resonators, 2nd ed. (Springer, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1.
Fig. 1.

(a) Graphs of the normalized transmitted beam profile for the m=1 FP mode. Experimental (EXP) data are displayed with square (red) data points and theoretical (THRY) data with a smooth (blue) curve. The renormalized incident Gaussian (INC) beam profile is shown with a dashed (green) curve. The inset shows the theoretical transmittance (TRANS) (red) of the m=1 mode and the amplitude squared Fourier transform (FK) (blue) of the incident Gaussian beam versus the angle of incidence. (b) Graphs of the normalized reflected beam profile for the m=2 FP mode. Experimental (EXP) theoretical (THRY) and renormalized incident (INC) curves displayed as in Fig. 1. The inset shows the theoretical reflectance (REFL).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

t123=(1r2)exp(ik2zd)1r2exp(2ik2zd),
(r,t)123=AR,T(kx)+BR,T(kx)kxkxm.
kxIm=(mλ/2d2)ln(r).
EmT(x,d)=E0exp[ikx0xkxImx+(wkxIm)24]erfc(wkxIm2xw).
Ei(x,0)=EmR(x,0)exp(imπ)EmT(x,d).

Metrics