Abstract

We report on a simple technique for the measurement of the recording response time in photorefractive materials. Three different material samples were successfully measured, and their response times, as well as their dependence upon the recording/measurement light irradiance, were also determined and compared with available data in the literature in order to assess the reliability of this technique.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Stepanov and M. Petrov, in Photorefractive Materials and Their Applications I, Vol. 61 of Topics in Applied Physics, P. Günter and J.-P. Huignard, eds. (Springer-Verlag, 1988), Chap. 9, pp. 263–289.
  2. K. Buse, Appl. Phys. B 64, 273 (1997).
    [CrossRef]
  3. J. Frejlich, Photorefractive Materials: Fundamental Concepts, Holographic Recording, and Materials Characterization (Wiley-Interscience, 2006), p. 61.
  4. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
  5. L. Solymar and D. Cooke, Volume Holography and Volume Gratings (Academic, 1981), pp. 41–44.
  6. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968), pp. 69–70.
  7. K. Peithmann, A. Wiebrock, and K. Buse, Appl. Phys. B 68, 777 (1999).
    [CrossRef]
  8. K. Buse, U. van Stevendaal, R. Pankrath, and E. Krätzig, J. Opt. Soc. Am. B 13, 1461 (1996).
    [CrossRef]
  9. G. A. Brost and R. A. Motes, Opt. Lett. 15, 1194 (1990).
    [CrossRef]
  10. I. de Oliveira and J. Frejlich, Opt. Commun. 178, 251 (2000).
    [CrossRef]
  11. P. V. dos Santos, J. F. Carvalho, and J. Frejlich, Opt. Mater. 29, 462 (2007).
    [CrossRef]
  12. K. Buse, Appl. Phys. B 64, 391 (1997).
    [CrossRef]

2007 (1)

P. V. dos Santos, J. F. Carvalho, and J. Frejlich, Opt. Mater. 29, 462 (2007).
[CrossRef]

2000 (1)

I. de Oliveira and J. Frejlich, Opt. Commun. 178, 251 (2000).
[CrossRef]

1999 (1)

K. Peithmann, A. Wiebrock, and K. Buse, Appl. Phys. B 68, 777 (1999).
[CrossRef]

1997 (2)

K. Buse, Appl. Phys. B 64, 273 (1997).
[CrossRef]

K. Buse, Appl. Phys. B 64, 391 (1997).
[CrossRef]

1996 (1)

1990 (1)

1969 (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Brost, G. A.

Buse, K.

K. Peithmann, A. Wiebrock, and K. Buse, Appl. Phys. B 68, 777 (1999).
[CrossRef]

K. Buse, Appl. Phys. B 64, 273 (1997).
[CrossRef]

K. Buse, Appl. Phys. B 64, 391 (1997).
[CrossRef]

K. Buse, U. van Stevendaal, R. Pankrath, and E. Krätzig, J. Opt. Soc. Am. B 13, 1461 (1996).
[CrossRef]

Carvalho, J. F.

P. V. dos Santos, J. F. Carvalho, and J. Frejlich, Opt. Mater. 29, 462 (2007).
[CrossRef]

Cooke, D.

L. Solymar and D. Cooke, Volume Holography and Volume Gratings (Academic, 1981), pp. 41–44.

de Oliveira, I.

I. de Oliveira and J. Frejlich, Opt. Commun. 178, 251 (2000).
[CrossRef]

dos Santos, P. V.

P. V. dos Santos, J. F. Carvalho, and J. Frejlich, Opt. Mater. 29, 462 (2007).
[CrossRef]

Frejlich, J.

P. V. dos Santos, J. F. Carvalho, and J. Frejlich, Opt. Mater. 29, 462 (2007).
[CrossRef]

I. de Oliveira and J. Frejlich, Opt. Commun. 178, 251 (2000).
[CrossRef]

J. Frejlich, Photorefractive Materials: Fundamental Concepts, Holographic Recording, and Materials Characterization (Wiley-Interscience, 2006), p. 61.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968), pp. 69–70.

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Krätzig, E.

Motes, R. A.

Pankrath, R.

Peithmann, K.

K. Peithmann, A. Wiebrock, and K. Buse, Appl. Phys. B 68, 777 (1999).
[CrossRef]

Petrov, M.

S. Stepanov and M. Petrov, in Photorefractive Materials and Their Applications I, Vol. 61 of Topics in Applied Physics, P. Günter and J.-P. Huignard, eds. (Springer-Verlag, 1988), Chap. 9, pp. 263–289.

Solymar, L.

L. Solymar and D. Cooke, Volume Holography and Volume Gratings (Academic, 1981), pp. 41–44.

Stepanov, S.

S. Stepanov and M. Petrov, in Photorefractive Materials and Their Applications I, Vol. 61 of Topics in Applied Physics, P. Günter and J.-P. Huignard, eds. (Springer-Verlag, 1988), Chap. 9, pp. 263–289.

van Stevendaal, U.

Wiebrock, A.

K. Peithmann, A. Wiebrock, and K. Buse, Appl. Phys. B 68, 777 (1999).
[CrossRef]

Appl. Phys. B (3)

K. Buse, Appl. Phys. B 64, 273 (1997).
[CrossRef]

K. Peithmann, A. Wiebrock, and K. Buse, Appl. Phys. B 68, 777 (1999).
[CrossRef]

K. Buse, Appl. Phys. B 64, 391 (1997).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

I. de Oliveira and J. Frejlich, Opt. Commun. 178, 251 (2000).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (1)

P. V. dos Santos, J. F. Carvalho, and J. Frejlich, Opt. Mater. 29, 462 (2007).
[CrossRef]

Other (4)

L. Solymar and D. Cooke, Volume Holography and Volume Gratings (Academic, 1981), pp. 41–44.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968), pp. 69–70.

J. Frejlich, Photorefractive Materials: Fundamental Concepts, Holographic Recording, and Materials Characterization (Wiley-Interscience, 2006), p. 61.

S. Stepanov and M. Petrov, in Photorefractive Materials and Their Applications I, Vol. 61 of Topics in Applied Physics, P. Günter and J.-P. Huignard, eds. (Springer-Verlag, 1988), Chap. 9, pp. 263–289.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic representation of the laser diffraction through the Ronchi-grating–photorefractive-crystal ensemble, showing the 1.5 mm thick Ronchi grating glass-plate substrate in between.

Fig. 2.
Fig. 2.

Evolution of the zero diffraction order for LN:Fe under an extraordinarily polarized 633 nm recording laser beam with I=0.51au, and corresponding theoretical fitting (dashed curve) leading to A=1.27, B=1.65, ϕ=2.44rad, m0=1.035, and τsc=106.15s. The additional dashed curves, clearly not matching data, were plotted using τsc=106.15±5%s; all other parameters were unchanged.

Fig. 3.
Fig. 3.

Computed 1/τsc for Fe-doped LiNbO3 crystal as a function of the irradiance I0 of the λ=633nm recording nonexpanded beam. The solid green circles represent zero diffraction order data under ordinarily polarized light, whereas the open red squares and open black triangles represent the first diffraction orders (from one side and the other referred to the zeroth order, respectively) data with extraordinarily polarized light. The dashed line is the best fitting with Eq. (3) using b=1.

Fig. 4.
Fig. 4.

Computed 1/τsc plotted as a function of the irradiance I0 of the λ=633nm recording nonexpanded beam for the zero diffraction order for SBN:Ce (open red squares) and for BTO (open blue circles). The best fitting (dashed curves) of data with Eq. (3) leads to b=1 for BTO and to b0.31 for SBN:Ce.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ηNJN2(m),m2πn1d/λ0,
ηN=|A+BeιϕJN(m(t))2,m(t)=m0(1et/τsc),
1/τsc=aI0b,

Metrics